
CMPT 225: Data Structures &
Programming – Unit 16 – Heaps

Dr. Jack Thomas

Simon Fraser University

Spring 2021

Today’s Topics

• The Heap

• Complete Binary Trees & the Heap-Ordering
Property

• Heap ADT

• Up-Heap & Down-Heap Bubbling

• Heap Sort

• Heaps in Java

The Drawback of Priority Queues:
Efficiency

• As we learned previously, a naïve implementation
for a Priority Queue must choose between either
keeping the data sorted (O(n2) insertions and
O(1) retrievals) or unsorted (O(1) insertions and
O(n2) retrievals), meaning there’s always some
inefficiency.

• This is a result of the slow speed of sorting an
unsorted queue, which is partly a consequence
of the underlying structure.

• Our solution: change the structure!

Combining Non-Positional and
Non-Linear Data Structures

• With Priority Queues, we learned about data
structures that don’t track elements using
their position in the structure, but rather their
key.

• With Trees, we learned about non-linear data
structures, as well as some of the rules and
constraints we can apply.

• It’s time to… COMBIIIIINE!

The Heap: Not Just a Disorganized Pile

• A Heap is a key-based data structure that
stores the keys of its entries as a complete
Binary Tree.

• The value of
each child
node’s key in
the Tree must
be equal to or
larger than
that of its
parent.

The Heap-Order Property

• The full and proper definition for this property
states:

– In the complete Binary Tree underlying the heap,
for every node other than the root, the key stored
by that node is greater than or equal to the key
stored by their parent.

Complete Binary Trees

• The full and proper definition that makes a
Binary Tree complete is:

– A tree T with height h is a complete binary tree if
levels 0,1,2…h-1 of T have the maximum number
of nodes possible (namely, level i has 2i nodes, for
0 <= i <= h-1) and in level h-1, all the internal
nodes are to the left of the external nodes, and
there is at most one node with one child, which
must be a left child.

The Last Node

• Along with the root at the start, we now have the
concept of the last node, which is the latest one
to be added, and which is placed in the one spot
the rules defining a Heap allow it to be placed.

• Another
definition is it is
the node on level
h such that all the
other nodes on
that level are to
its left.

The Height of a Heap

• By building our Heap according to the rules of
a full Binary Tree and the Heap-Order, we can
claim that Tree’s height (h) = floor(log2n)

• Therefore, we can
traverse the Tree from
the root to any one leaf
in O(log n).

• This can help us solve
the insertion-sort vs.
selection sort problem!

Where’s the Heap ADT?

• Heaps, oddly enough, are not considered true
ADTs.

• Instead, complete Binary Trees that also
adhere to the Heap-Ordering property are
called Heaps.

• We can replace the linear Queue structure
within a Priority Queue with a Heap to gain
the benefits of its more efficient layout.

Insertion in Heaps

• Since we always know where the current
“last” node is, we can also tell where the next
node to be added should go – this is called the
insertion node.

• However, the new node may have violated the
Heap-Order property if its key is smaller than
its new parent.

• Our new add method must therefore restore
this ordering via up-heap bubbling.

Up-Heap Bubbling

• First, we add our new
node into the
insertion node
position of the Heap.

• Since we keep track
of our last node, this
should be easy to
find.

Up-Heap Bubbling

• Then, we begin
comparing the key
value of the newly-
added child to that of
its parent.

• If the child has a
smaller key, then the
two nodes are
swapped.

Up-Heap Bubbling

• This process then
repeats with the
node’s new parent,
and if their key is still
smaller, then they
also swap.

Up-Heap Bubbling

• The process
continues until the
node either finds a
parent with a smaller
key, or else swaps
with the root and
becomes the new
root.

Up-Heap Bubbling

• Conveniently, since we
know the height of the
tree is no more than
log n, and since the
processes of adding
the insertion node,
comparing keys, and
swapping parent and
child nodes are all
constant, this whole
process is O(log n)

Returning and Removing
the Smallest Key

• Simply returning the highest-priority entry is
easy, since that will be the root.

• Like adding, however, removing the root may
cause the Heap-Order property to be
violated.

• Therefore, our removeMin method from the
Priority Queue must be modified to restore
this property, through a process we call
Rootin-Tootin-Heap-Rebootin.

• Nah I’m just kidding it’s down-heap bubbling.

Down-Heap Bubbling

• You might think you already know how this
will go, but it’s a little more complicated than
it sounds.

• First you should return (or copy to return
later) the contents of the current root node,
which will be the (or at least, a) smallest key.

• Then, you overwrite the current root with the
current last node, and use the regular remove
function to remove the current last node.

Down-Heap Bubbling

• We do this for a
variety of reasons,
like how it helps
satisfy edge cases
where there’s only
two nodes (root and
last), but it almost
certainly means we
need to reorder.

Down-Heap Bubbling

• If the new root had no
children, we’d be
done.

• Otherwise, if it had
only one (left) child,
we’d designate that
child s.

• Otherwise, s is
whichever of the two
children of root has
the smaller key.

Down-Heap Bubbling

• If r < s, then the root
and the child with
the smallest key
swap positions (since
we chose the child
with the smallest
key, we don’t have to
worry about the new
root and their
former sibling)

Down-Heap Bubbling

• This process then
repeats for the newly
swapped node, and
will continue until it
reaches a place where
it is smaller than all of
its children or it
becomes an external
node.

Down-Heap Bubbling

• Because this process
only involves
constant-time
operations, and can
only take as many
iterations as the Tree
has height, it too is
O(log n).

Analysis of Heap Methods
for Priority Queues

• If we use a Heap and Heap Sorting for our add
and removeMin methods, we can get both down
to O(log n) in our Priority Queue.

• A full Heap Sort of an unsorted set of n elements,
therefore, will take O(n log n).

• This is, in general, a huge improvement over
having to pick between Insertion Sort’s
O(n2)/O(1), or Selection Sort’s O(1)/O(n2).

• Be aware there are niche situations where one or
the other could still be beneficial, constant time
can be very powerful!

Heaps in Java

• Good news! The PriorityQueue class is actually
based on a Heap!

• A fully-default PriorityQueue of integers (or one
with a comparator that fishes an integer key out
of a node object) will act exactly like a min-Heap,
with the lowest-numbered (highest priority) key
at the root.

• You can define a custom Comparator that flips
the result to get a max-Heap, with the highest-
numbered key at the root instead, or any other
rule you want to use that gives a total ordering.

A Final Note on Why Heaps Work

• It turns out that to find the next highest priority entry,
we don’t actually need to keep the entire set ordered,
just that every family line descending from the current
root is in order.

• The growth rate of the time it takes to order any one
family line is dependent on the growth rate of the
height of the tree, not the number of inputs directly.

• This does mean that the Tree as a whole isn’t in a
linear order at any one time, which means pulling out
arbitrary keys (like the fifth-highest priority) is more
complicated – more on that later!

Recap – A Heaping Helping Of Slides

• A Heap is a combination of a complete Binary
Tree and the Heap-Ordering Property.

• This binds the growth-rate of the height of the
tree, and ensures each path from the root to a
leaf is ordered from smallest to largest.

• We can use a Heap as the basis for a Priority
Queue to improve and balance the run-times of
the add and removeMin methods, by adding up-
heap and down-heap bubbling.

• In Java, the default PriorityQueue is based on a
Heap already.

