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Today’s Topics 

• The Heap 

• Complete Binary Trees & the Heap-Ordering 
Property 

• Heap ADT 

• Up-Heap & Down-Heap Bubbling 

• Heap Sort 

• Heaps in Java 



The Drawback of Priority Queues: 
Efficiency 

• As we learned previously, a naïve implementation 
for a Priority Queue must choose between either 
keeping the data sorted (O(n2) insertions and 
O(1) retrievals) or unsorted (O(1) insertions and 
O(n2) retrievals), meaning there’s always some 
inefficiency. 

• This is a result of the slow speed of sorting an 
unsorted queue, which is partly a consequence 
of the underlying structure. 

• Our solution: change the structure! 



Combining Non-Positional and  
Non-Linear Data Structures 

• With Priority Queues, we learned about data 
structures that don’t track elements using 
their position in the structure, but rather their 
key. 

• With Trees, we learned about non-linear data 
structures, as well as some of the rules and 
constraints we can apply. 

• It’s time to… COMBIIIIINE! 



The Heap: Not Just a Disorganized Pile 

• A Heap is a key-based data structure that 
stores the keys of its entries as a complete 
Binary Tree. 

• The value of 
each child 
node’s key in 
the Tree must 
be equal to or 
larger than 
that of its 
parent. 



The Heap-Order Property 

• The full and proper definition for this property 
states: 

– In the complete Binary Tree underlying the heap, 
for every node other than the root, the key stored 
by that node is greater than or equal to the key 
stored by their parent. 



Complete Binary Trees 

• The full and proper definition that makes a 
Binary Tree complete is: 

– A tree T with height h is a complete binary tree if 
levels 0,1,2…h-1 of T have the maximum number 
of nodes possible (namely, level i has 2i nodes, for 
0 <= i <= h-1) and in level h-1, all the internal 
nodes are to the left of the external nodes, and 
there is at most one node with one child, which 
must be a left child. 



The Last Node 

• Along with the root at the start, we now have the 
concept of the last node, which is the latest one 
to be added, and which is placed in the one spot 
the rules defining a Heap allow it to be placed. 

• Another 
definition is it is 
the node on level 
h such that all the 
other nodes on 
that level are to 
its left. 



The Height of a Heap 

• By building our Heap according to the rules of 
a full Binary Tree and the Heap-Order, we can 
claim that Tree’s height (h) = floor(log2n) 

• Therefore, we can 
traverse the Tree from 
the root to any one leaf 
in O(log n). 

• This can help us solve 
the insertion-sort vs. 
selection sort problem! 



Where’s the Heap ADT? 

• Heaps, oddly enough, are not considered true 
ADTs. 

• Instead, complete Binary Trees that also 
adhere to the Heap-Ordering property are 
called Heaps. 

• We can replace the linear Queue structure 
within a Priority Queue with a Heap to gain 
the benefits of its more efficient layout. 



Insertion in Heaps 

• Since we always know where the current 
“last” node is, we can also tell where the next 
node to be added should go – this is called the 
insertion node. 

• However, the new node may have violated the 
Heap-Order property if its key is smaller than 
its new parent. 

• Our new add method must therefore restore 
this ordering via up-heap bubbling. 



Up-Heap Bubbling 

• First, we add our new 
node into the 
insertion node 
position of the Heap. 

• Since we keep track 
of our last node, this 
should be easy to 
find. 



Up-Heap Bubbling 

• Then, we begin 
comparing the key 
value of the newly-
added child to that of 
its parent. 

• If the child has a 
smaller key, then the 
two nodes are 
swapped. 



Up-Heap Bubbling 

• This process then 
repeats with the 
node’s new parent, 
and if their key is still 
smaller, then they 
also swap. 



Up-Heap Bubbling 

• The process 
continues until the 
node either finds a 
parent with a smaller 
key, or else swaps 
with the root and 
becomes the new 
root. 



Up-Heap Bubbling 

• Conveniently, since we 
know the height of the 
tree is no more than 
log n, and since the 
processes of adding 
the insertion node, 
comparing keys, and 
swapping parent and 
child nodes are all 
constant, this whole 
process is O(log n) 



Returning and Removing  
the Smallest Key 

• Simply returning the highest-priority entry is 
easy, since that will be the root. 

• Like adding, however, removing the root may 
cause the Heap-Order property to be 
violated. 

• Therefore, our removeMin method from the 
Priority Queue must be modified to restore 
this property, through a process we call 
Rootin-Tootin-Heap-Rebootin. 

• Nah I’m just kidding it’s down-heap bubbling. 



Down-Heap Bubbling 

• You might think you already know how this 
will go, but it’s a little more complicated than 
it sounds. 

• First you should return (or copy to return 
later) the contents of the current root node, 
which will be the (or at least, a) smallest key. 

• Then, you overwrite the current root with the 
current last node, and use the regular remove 
function to remove the current last node. 



Down-Heap Bubbling 

• We do this for a 
variety of reasons, 
like how it helps 
satisfy edge cases 
where there’s only 
two nodes (root and 
last), but it almost 
certainly means we 
need to reorder. 



Down-Heap Bubbling 

• If the new root had no 
children, we’d be 
done. 

• Otherwise, if it had 
only one (left) child, 
we’d designate that 
child s. 

• Otherwise, s is 
whichever of the two 
children of root has 
the smaller key.  



Down-Heap Bubbling 

• If r < s, then the root 
and the child with 
the smallest key 
swap positions (since 
we chose the child 
with the smallest 
key, we don’t have to 
worry about the new 
root and their 
former sibling) 



Down-Heap Bubbling 

• This process then 
repeats for the newly 
swapped node, and 
will continue until it 
reaches a place where 
it is smaller than all of 
its children or it 
becomes an external 
node. 



Down-Heap Bubbling 

• Because this process 
only involves 
constant-time 
operations, and can 
only take as many 
iterations as the Tree 
has height, it too is 
O(log n). 



Analysis of Heap Methods  
for Priority Queues 

• If we use a Heap and Heap Sorting for our add 
and removeMin methods, we can get both down 
to O(log n) in our Priority Queue. 

• A full Heap Sort of an unsorted set of n elements, 
therefore, will take O(n log n). 

• This is, in general, a huge improvement over 
having to pick between Insertion Sort’s 
O(n2)/O(1), or Selection Sort’s O(1)/O(n2). 

• Be aware there are niche situations where one or 
the other could still be beneficial, constant time 
can be very powerful! 



Heaps in Java 

• Good news! The PriorityQueue class is actually 
based on a Heap! 

• A fully-default PriorityQueue of integers (or one 
with a comparator that fishes an integer key out 
of a node object) will act exactly like a min-Heap, 
with the lowest-numbered (highest priority) key 
at the root. 

• You can define a custom Comparator that flips 
the result to get a max-Heap, with the highest-
numbered key at the root instead, or any other 
rule you want to use that gives a total ordering. 



A Final Note on Why Heaps Work 

• It turns out that to find the next highest priority entry, 
we don’t actually need to keep the entire set ordered, 
just that every family line descending from the current 
root is in order. 

• The growth rate of the time it takes to order any one 
family line is dependent on the growth rate of the 
height of the tree, not the number of inputs directly. 

• This does mean that the Tree as a whole isn’t in a 
linear order at any one time, which means pulling out 
arbitrary keys (like the fifth-highest priority) is more 
complicated – more on that later! 



Recap – A Heaping Helping Of Slides 

• A Heap is a combination of a complete Binary 
Tree and the Heap-Ordering Property. 

• This binds the growth-rate of the height of the 
tree, and ensures each path from the root to a 
leaf is ordered from smallest to largest. 

• We can use a Heap as the basis for a Priority 
Queue to improve and balance the run-times of 
the add and removeMin methods, by adding up-
heap and down-heap bubbling. 

• In Java, the default PriorityQueue is based on a 
Heap already. 


