
CMPT 225: Data Structures & Programming
– Unit 15 –

Priority Queues

Dr. Jack Thomas

Simon Fraser University

Spring 2021

Today’s Topics

• Keys and Comparators

• The Priority Queue

• Priority Queue ADT

• Priority Queues in Java

• Implementing Priority Queues and Sorting

Positions vs. Keys

• When we introduced Trees, we discovered that
all the data structures we’d covered so far were
linear, whereas Trees were non-linear.

• Now we’ll discover that all previous data
structures were position-based, meaning the
user is manipulating data via its position (using an
index, addLast, head, tail, root…).

• Priority Queues are instead key-based, hiding
exactly where the data is being stored inside itself
and instead using a special key to retrieve it.

What is a Priority Queue?

• Exactly what it sounds like – a queue, except
instead of giving you the element that’s been
in the queue the longest, it gives you the
element that has the highest associated
“priority”.

• Taking from a Queue:

• Taking from a Priority Queue, prioritized
alphabetically:

Okay, What is “Priority”?

• Priority is in quotes because it doesn’t actually
have to correlate to priority. It could be
alphabetical by name, or sorting a randomly
generated ID number from smallest to largest.

• Whatever it’s based on, this priority score is the
key, whereas the data it is paired to is the value.
Together, they make up an entry into the Priority
Queue.

Properties of Keys

• They don’t have to be unique.
– The chosen key might be unique per element, but the

broadest definition allows duplicate keys.

• They don’t have to be one thing.
– Keys can be calculated from several attributes, or even

from something not directly stored with the object, so long
as the key is consistent each time it’s called.

• For a PQ, they do have to achieve a total ordering.
– It must be possible to achieve a linear ordering from

largest to smallest using the keys, without any
contradictions (i.e. A greater than B, B greater than C, C
greater than A).

– Therefore, there will exist a definitive smallest key or keys.

Entries and Comparators

• Entries are essentially nodes which each store
one value and one key.

• To find and return the entry with the smallest
key, there must be a rule for comparing keys.

• These rules can’t be stored with every key,
requiring special Comparator objects which
can take in two keys and return which one is
smaller.

Comparator Example

• Say I’m using the day of the month as my key.
• One entry has the 4th, while another has the 12th.
• If read as integers, then 4 < 12, but if read as

Strings, then 12 < 4 (because it starts with 1).
• What if I decided to include the month as part of

the key? Then the 4th of February would come
before the 12th of February, but after the 12th of
January.

• Defining these rules and deciding which key
comes first is the job of a Comparator object.

The Priority Queue ADT

• A data structure for storing entries containing data
values and keys.

• Based on keys included with each entry rather than
their positions in the queue.

• Standard methods include:
– Insert: Adds a given key and value to the Priority Queue,

and returns their combined entry.
– removeMin: Removes and returns an entry of P with the

smallest key. (Sometimes called poll, from queue)
– Min: Returns but does not remove an entry of P with the

smallest key. (Sometimes called peek, from queue)
– The usual generic methods from Queue as well, like

isEmpty() and size().

Priority Queues in Java

• There is a standard Priority Queue class in
Java which automates and hides a lot of the
work of setting up most default comparators.

Comparators in Java

• PriorityQueue lets us set a Comparator of our
own for prioritizing objects.

• Comparator is a standard interface that lets us
define a compare(entry 1, entry 2) function to
decide which is “smaller”.

• Say we have entries representing characters in a
video game with a String name and an int level,
and we want the Priority Queue to prioritize
whoever has the highest level, not the lowest.

Implementing a Priority Queue
and the Importance of Sorting

• The big implementation question involved in a
Priority Queue is how you keep track of the
highest-priority entries.
1. Option one is to keep the queue sorted according

to priority. You can poll the next highest priority
entry right off the front of the queue, but every time
you add an entry you need to sort the queue again.

2. The alternative is to just add each entry to the back
of the queue as normal, but now every time you poll
the queue you’ll have to search the whole thing for
the highest priority element.

Insertion Sort and Selection Sort

• Using a sorted list as the basis for our Priority
Queue requires an insertion sort, which triggers
when a new entry is added.

• If we use an unsorted list, then the add function
remains unchanged. Now when you poll, you’ll
need to trigger a selection sort.

• The details of these functions will depend on our
choice of underlying data structure (in this case,
a list) and matching algorithm, but will be
constrained by their run-time efficiency.

Comparing Run-Times

• In a naive sequence (list) based implementation, we
essentially need to rebuild the queue every time as
part of insertion or selection sorting, resulting in O(n)
for the rebuilding and O(n) for the sorting per element.

• The Priority Queue based on an unsorted list can add
elements at O(1), but retrieves them at O(n2).

• The one based on a sorted list can retrieve entries at
O(1), but adds them at O(n2).

• As such, our choice of implementation should reflect
the needs of our situation!

Recap – The Highest Priority
Lecture Points

• Priority Queues are our first data structure that’s key-
based rather than position-based.

• Keys are paired with data values in entries, and can be
compared with one another using comparators to
generate an ordering.

• The Priority Queue ADT adds entries to the queue and
then retrieves the entry with the smallest key (highest
priority).

• Java has a standard Priority Queue class and
Comparator interface we can use to define our own
rules for priority.

• The implementation of the Priority Queue depends on
when the queue is sorted, and will significantly impact
the run time.

