
CMPT 225: Data Structures & Programming
– Unit 14 –

Traversals & Binary Trees

Dr. Jack Thomas

Simon Fraser University

Spring 2021

Today’s Topics

• Traversals Continued

• Binary Trees

• The Binary Tree ADT

• Binary Trees in Java

• Inorder Traversals

• Euler Tour Traversals

More on Traversals

• There are several types of traversals that can
serve as the basis for our solutions, depending on
the problem.

• Traversal algorithms are typically recursive,
involving a step that accesses the current node’s
element and steps that recursively call itself on
the node’s parents or children, or returning.

• The distinguishing feature of each type is when
they access (or visit) each node’s element, instead
of first visiting a parent or child of that node.

• Algorithms typically allow only one visit per node.

Preorder Traversal

• In preorder traversals, the visit happens first,
then the algorithm moves on to that node’s
children.

Algorithm preorder(T,v):
 Input: A tree T and node v.
 Output: The result of each visit, starting with
 v and moving to v’s children.
 perform the “visit” action for node v
 for each child w of v in T do
 preorder(T,w)

Example Preorder: Printing a Tree

• A recursive,
preorder solution
would print:
– Paper Title

– Contents

– Section 1

– Section 1.1

– Section 1.2

– Section 2

– Appendices

– Appendix A

Postorder Traversal

• Postorder traversals start by visiting the
children of the node, then visit the parent.

Algorithm postorder(T,v):
 Input: A tree T and node v.
 Output: The result of each visit, starting with
 v’s children before v.
 for each child w of v in T do
 postorder(T,w)
 perform the “visit” action for node v

Postorder Example:
Resolving an Arithmetic Expression

• A postorder recursive
solution would
calculate (8*2) + (20/5)

• This depends on the
order of operations
being correctly
represented by the
tree, internal nodes
being operators, and
external nodes being
numbers.

The Binary Tree

• A Binary Tree is a tree with
these additional
constraints:
– No node has more than two

children.

– The children of each node
are ordered (one is first, or
left, while the other is last,
or right).

• In a proper (or full) binary
tree, nodes have either
zero or two children.

Applications of a Binary Tree

• Arithmetic expressions.

– Ex: 8 * 2 + 20 /5

• Decision trees

• Sorting and Searching

Properties of a Binary Tree

• The binary constraint influences the relationship
between the number (n) of nodes in the tree, the
height (h) of the tree, and the number of internal (i)
and external (e) nodes.
1. The number of nodes (n) will be greater than or equal to

the height (h) + 1, but less than or equal to 2h+1 -1
2. There must always be at least one external node e, but

there can’t be more than 2h.
3. There must at least be as many internal nodes i as the

height (h) of the tree, and no more than 2h – 1.
4. The height (h) can be between log2(n+1) and n – 1.

• Remember these when coming up with algorithmic
solutions to problems involving Binary Trees.

Binary Tree ADT

• A subtype of the Tree data structure which limits
nodes to a maximum of two ordered children.

• Includes all of the methods and properties of the
general Tree.

• Binary Trees include the following methods:

– Left: Returns the left child.

– Right: Returns the right child.

– hasLeft: Confirms whether there’s a left child.

– hasRight: Confirms whether there’s a right child.

The Binary Tree in Java

• Once again, there is no built-in Binary Tree class
or interface in Java.

• We can take the general tree from our previous
unit and modify it into a Binary Tree.

• “Isn’t this a job for inheritance”? Well, it could be,
depending on how we defined our Tree and Node
classes.

• To make our implementations easier to follow,
however, we’ll simply rewrite the parts we need
directly to make one pure Binary Tree class.

Implementing a Binary Tree

• A ton of the methods for a Binary Tree will be
either the same or require only a trivial
change from the general tree we
implemented before, including:

– Size, isEmpty

– isRoot, isInternal, isExternal, hasLeft, hasRight

– Left, right, root, sibling, parent, children

• Attaching a new node, removing an old one,
and collecting all the nodes (without keeping a
supplementary list) is more involved.

Implementing a Binary Tree

Implementing a Binary Tree

Inorder Traversals

• A node is visited after its left subtree but
before its right subtree.

Algorithm inorder(T,v):
 Input: A tree T and node v.
 Output: The result of each visit, starting with
 v’s left child before v and followed by v’s right
 child.
 for the left child w of v in T do
 inorder(T,w)
 perform the “visit” action for node v
 for the right child z of v in T do
 inorder(T,z)

Inorder Example:
Printing an Arithmetic Expression

• An inorder recursive
solution would print:

– 8 * 2 + 20 / 5

Euler Tour Traversal

• By lifting the constraint that a node can only
be “visited” once, we can perform a full tour
around every node of a subtree.

Algorithm eulerTour(T,v):
 Input: A tree T and node v.
 Output: The result of each visit, starting with v’s children
 before v.
 Perform the action for visiting node v on the left.
 If v has a left child u in T then
 eulerTour(T, u)
 Perform the action for visiting node v from below.
 if v has a right child w in T then
 euler tour(T, w)
 perform the action for visiting node v on the right

Euler Tour Traversal
1. A toLeft B
2. B toLeft C
3. C toLeft D
4. D toParent C
5. C toRight E
6. E toParentC
7. C toParentB
8. B toRight F
9. F toRight G
10. G toParent F
11. F toParent B
12. B toParent A
13. A toRight H
14. H toLeft I
15. I toParent H
16. H toRight J
17. J toLeft K
18. K toParent J
19. J toLeft L
20. L toParent J
21. J toParent H
22. H toParent A
23. A isRoot

Inorder,
postorder,
and
preorder
traversals
are all sub-
types of
Euler Tours.

Recap – Traversed to the Leaf Slide

• Algorithms for interacting with data in a tree are
organized into different types of traversals.

• Binary trees are a structurally-constrained version of
trees with a maximum of two ordered children per
node.

• There is no default binary tree class in Java, though it’s
a simple modification from a general tree.

• They also enable the inorder traversal, which visits the
left child before the node itself, and then the right child
afterward.

• The Euler Tour traversal allows us to travel to and visit
every node in the tree.

