
CMPT 225: Data Structures &
Programming – Unit 13 – General Trees

Dr. Jack Thomas

Simon Fraser University

Spring 2021

Today’s Topics

• The Tree ADT

• Preview of Tree Variants

• Trees in Java

• Implementing a Tree

• Analyzing our Tree

• Traversing a Tree

Tree: The ADT

• A data structure storing a non-linear set of data
elements.

• These elements are organized into a hierarchy.
• Methods of a Tree include:

– Element: Returns the object stored in a given node.
– Root: Returns the root of a Tree.
– Parent: Returns the parent of a given node.
– Children: Returns a collection of the nodes that are

children of a given node.
– isInternal: Tests whether a node is internal.
– isExternal: Tests whether a node is external (a leaf).
– isRoot: Tests whether a node is the root.

Tree: The ADT

• There are also a number of generic methods we
have seen or will see again:

– Size: Returns the number of nodes of the tree.

– isEmpty: Tests whether the tree has nodes or not.

– Iterator: Returns an iterator (a type of collection) of all
of the elements stored in the nodes of the tree.

– Positions: Returns a collection of all nodes of the tree.

– Replace: Swaps the element stored in a given node
with a given element.

How do we Add? Remove?
Search? Sort?

• The ADT for the most general sort of Tree is
actually so general that it doesn’t provide
methods for a lot of core functions

• Instead, the many variant trees each define
these methods according to their own
constraints and structures.

• Like with roots, there are many different
constraints or properties that can be applied
to a tree to give it some special structure.

Ordered Trees

• When we draw a tree, we often reflexively read each
node’s children from left to right, but this isn’t
fundamental to a tree.

• If the children do have some relative position to each
other, we call this an ordered tree – like how a list node’s
next and previous links have a direction, a tree node’s
children are also ordered from first to last.

Balanced Trees

• In a balanced tree, the
difference between
the height of any
node’s subtrees is
within one.

• A perfectly balanced
tree has all leaves with
the same depth.

Binary Tree

• A Binary Tree restricts
each node of a tree to at
most two children.

• (We’ll have more on this
one later)

Binary Search Tree

• A Binary Search Tree also
orders the children such
that, for every node in the
tree, the value of the
element in their “left”
child (and all of that child’s
descendants) is less than
that node’s element, while
the value of the element in
their “right” child (and all
of that child’s
descendants) is greater.

• (More on this one later
too)

The Tree in Java

• The purely general Tree doesn’t just not have
a standard Java class, it doesn’t even have an
interface.

• There are Tree classes in Java, or interfaces
relevant to Trees, but they are based on
specific variants that we’ll discuss later.

• That doesn’t mean we can’t make our own!

Implementing a Tree

Analyzing the Tree

• Asymptotic analysis for the Tree’s methods:
– Size, isEmpty: O(1)
– Positions, iterator: O(n)
– Replace: O(1)
– Root, parent: O(1)
– Children: O(# of children of the given node)

• A special case, since this isn’t directly connected to n.

– isInternal, isExternal, isRoot: O(1)

• The run-time analysis for methods that add,
remove, sort, and search a tree will vary greatly
based on the variant of tree we’re dealing with.

Traversing a Tree

• Adding, removing, sorting, and retrieving all
typically involve having to traverse a tree,
navigating from the root (like the head in a
list) to wherever you need to go.

• For example, say we want to find the depth of
a node. We could use a simple recursive
algorithm that returns zero if the node it’s
considering is the root, or recursively call itself
on the node’s parent and add one if it isn’t.

Depth()
Algorithm depth(T, p):

 Input: A tree T and a node (position) p.

 Output: The depth of the node p

 if p.isRoot()

 return 0

 else

 return 1 + depth(T, p.parent())

• While the worst-case run time could be O(n),
the depth of the tree doesn’t always grow
proportionately with the number n of inputs.

Height()

• Finding the height of a node depends on
finding the depth of its deepest descendent,
which can be found with the help of depth().

Algorithm height(T):
 Input: A tree T.
 Output: The height of the tree T
 h = 0
 for each p in T.positions() do
 if p.isExternal() then
 h = max(h, depth T,p))
 return h

Problems with Height()

• Unfortunately, that algorithm requires us to
visit every node in the tree to find all of the
external ones, and then calls depth() (an O(n)
function) on each of them to find the deepest.

• This sounds like an O(n2) operation, and
doesn’t take advantage of any of the features
of the tree’s hierarchy.

Height2(), Leveraging Recursion

• If every node can be the root of a subtree, and
the height of every tree is the height of their
highest child’s subtree + 1, then…

Algorithm height2(T, p):
 Input: A tree T and a node p.
 Output: The height of the tree T
 if p is external then
 return 0
 else
 h = 0
 for each q in p.children() do
 h = max(h, height2(T, q))
 return 1 + h

Height2() and the
Benefits of Smart Traversal

• Starting from root, this function makes a
recursive call on each child, each of which will
either return in constant time (if external) or
make a recursive call on each of their children.

• The algorithm “visits” each node once, starting
from root and working its way down. Its runtime
is in the realm of 2n, or O(n).

• This is a preorder traversal, which works down
through a node’s children to the leaves. A
postorder traversal works up through the parents
to the root.

Recap – Come Up With Your Own
“Lumberjack” Joke If You Want

• The general Tree has an ADT of standard methods and
properties that apply to the many variants of trees.

• Some variant properties include whether the tree is
ordered, balanced, binary, or a full binary search tree.

• Standard Java doesn’t include built-in classes or
interfaces for Trees, but we can make our own easily
enough.

• Analysis of a Tree’s performance will depend a lot on
our chosen variant.

• Traversing a Tree is where a lot of the value is, and will
motivate us learning more about types of Trees.

