CMPT 225: Data Structures \& Programming - Unit 12 - Trees

Dr. Jack Thomas

Simon Fraser University
 Spring 2021

Today's Topics

- Introducing the Tree
- Non-Linear Data Storage
- Defining a Tree
- Tree Terminology
- Roots

- Not a part of this unit: the Tree ADT, Trees in Java, or anything on implementation. Stay tuned!

Time To Get Non-Linear

- The data structures we've dealt with so far have organized their data linearly - as in, like a line.

- With trees, we start to visualize how our data is stored in new ways.

Some Trees

- Each node of a tree is called a vertex.
- Each vertex of a tree is connected to at least one other vertex via an edge.
- Similar in construction to a list of nodes, only not constrained to a strictly linear set of next/previous relationships.

Not Trees

- The first example has a loop - trees can't have cycles.
- The second is three disconnected trees - a forest!
- The third has a four way connection - tree connections are all one-to-one.

Defining a Tree

- An empty set of vertices (i.e. a blank screen) is a tree, the empty tree.
- A single vertex with no edges is also a tree (albeit a lonely one!).
- If you have a tree (T), select one vertex (u of T), then add a new vertex (u) to T, and connect them with an edge (uv), then that's a tree too.
- We're essentially using inductive reasoning here to define a tree up from its first vertex, like growing it from a seed one branch at a time!

Tree 0

Tree 1

Tree 2

Tree(s) 3

Not A Tree!

- An interesting property of this definition: there will only be one path from any node in a tree to any other node.

Tree Terminology

- If two vertices are connected by an edge, we say that they're adjacent, or neighbours.
- The more edges that connect to a vertex, the higher degree it has. A vertex connected to only one other vertex has degree one, one connected to four neighbours has degree four.
- Vertices with only one edge (so degree one) are called leaves.
- Vertices with more than one edge (degrees higher than one) are called internal nodes.
- The number of edges in the path between two nodes is their distance. Two neighbours are distance one, whereas a neighbours' neighbour will be distance two.

Label This Tree

- Give each vertex's neighbours, their degree, their distance to the other vertices, and whether they're leaves or internal nodes.

Trees and Roots

- Trees are often (though not always) actually rooted trees, a type of tree where a special vertex is called the root. This root vertex is often drawn at the top of a diagram, with adjacent vertices flowing down from it.

Rooted Tree Terminology

- Think of a rooted tree like a family tree - a node that is "above" (i.e. a neighbour a shorter distance to the root) another node is called that node's parent. The neighbours that are "below" (i.e. a further distance from the root) are that node's children.

Rooted Tree Terminology

- A grandparent, naturally, is a parent's parent, while a grandchild is a child's child. Siblings have the same parent.
- Hopefully you didn't need me to tell you that.
- Ancestors of a node are all the nodes on the path from that node back to the root, while that node's descendants are all nodes whose path back to the root will pass through them.

Rooted Tree Terminology

- The subtree of a node is that node and all of its descendants (both the vertices and the edges, to be clear). Essentially a new tree with the chosen node as the root.
- The depth of a node is how many edges it takes to connect them to the root - so zero for the root, one for the root's children, two for the root's grandchildren, etc.
- The height of the tree is the maximum depth of any node across the whole tree.

Diagramming A Rooted Tree

- If the red node is the root, the blue node is the root of the subtree in the red circle.
- The other nodes in the circle are the blue nodes' descendants, while the root is its parent and ancestor.
- The depth of the red root is 0 , the depth of the blue node is 1 (or 0 within its own subtree), the depth of the blue node's children is 2 (or 1 within blue's subtree)
- The height of the tree is 3 , while the height of the subtree is 2 .

Recap - Seeing The Forest

- Trees are a kind of non-linear data structure for storing a set of nodes.
- The definition of a tree ensures all nodes are connected by edges and there is only one path connecting any two nodes.
- Rooted trees are a common variant where one vertex (node) of the tree is named the root, with all other vertices "descending" from it.
- There's a boatload of tree-related terminology to learn, including parents, children, depth, height, neighbours, subtrees, descendants, ancestors, degrees, leaves, internal nodes, siblings, grandchildren, and grandparents.

