CMPT 225: Data Structures & Programming
— Unit 10 —
Design Patterns & Adapters

Dr. Jack Thomas
Simon Fraser University
Spring 2021




Today’s Topics

(Re)visiting Design Patterns

The
Imp
Ada

Adapter
ementing an Example

oting Through Inheritance



Design Patterns

* A set of best-practices for solving a common
design problem.

* Not official, more like the consensus of the

programming community from experience. As
such, there is no one format or authority.

 The book Design Patterns: Elements of Desgn e g
Reusable Object-Oriented Software
(Gamma et al., 1994) was a milestone in :
computer science and the 23 patterns it _—
describes are still in use today. .

Image credit: https://en.wikipedia.org/wiki/Design Patterns



https://en.wikipedia.org/wiki/Design_Patterns
https://en.wikipedia.org/wiki/Design_Patterns

The Adapter

* Also called the Wrapper, the Adapter pattern
is used when we want to alter the
interactions of one class to fit with another.

* The concept is similar to a
USB adapter allowing you
to charge your phone
with your laptop.

Image credit: https://www.amazon.ca/nonda-Adapter-T
hunderbolt-MacBook-Surface/dp/BO7XYTHCXV



https://www.amazon.ca/nonda-Adapter-Thunderbolt-MacBook-Surface/dp/B07XYTHCXV
https://www.amazon.ca/nonda-Adapter-Thunderbolt-MacBook-Surface/dp/B07XYTHCXV
https://www.amazon.ca/nonda-Adapter-Thunderbolt-MacBook-Surface/dp/B07XYTHCXV
https://www.amazon.ca/nonda-Adapter-Thunderbolt-MacBook-Surface/dp/B07XYTHCXV
https://www.amazon.ca/nonda-Adapter-Thunderbolt-MacBook-Surface/dp/B07XYTHCXV
https://www.amazon.ca/nonda-Adapter-Thunderbolt-MacBook-Surface/dp/B07XYTHCXV
https://www.amazon.ca/nonda-Adapter-Thunderbolt-MacBook-Surface/dp/B07XYTHCXV
https://www.amazon.ca/nonda-Adapter-Thunderbolt-MacBook-Surface/dp/B07XYTHCXV
https://www.amazon.ca/nonda-Adapter-Thunderbolt-MacBook-Surface/dp/B07XYTHCXV
https://www.amazon.ca/nonda-Adapter-Thunderbolt-MacBook-Surface/dp/B07XYTHCXV
https://www.amazon.ca/nonda-Adapter-Thunderbolt-MacBook-Surface/dp/B07XYTHCXV
https://www.amazon.ca/nonda-Adapter-Thunderbolt-MacBook-Surface/dp/B07XYTHCXV
https://www.amazon.ca/nonda-Adapter-Thunderbolt-MacBook-Surface/dp/B07XYTHCXV
https://www.amazon.ca/nonda-Adapter-Thunderbolt-MacBook-Surface/dp/B07XYTHCXV

How an Adapter Works

* A wrapper class is the interface layer between
two classes, providing functions that convert data
from one into the functions used by the other.

* Generally, it will include the original class being
adapted as a hidden variable, while presenting
the functions of the new class.

* The work is filling those functions with code that
makes use of the original class’s functions.



Example: From Deque to Stack

Say we have a Deque, but what we need is a
Stack.

“Isn’t a Deque more general than a Stack
anyway?” Yes, but code doesn’t work like that.

If a system is expecting to receive a Stack object,
it needs to get a Stack object. Remember ADTs
and our object-oriented principles, it’s the
expected interface methods that matter.

So what we’ll do is make an Adapter class that
implements a Stack’s interface, so it’ll look like a
Stack from the outside, but contains a Deque
within itself.



Let’s Implement That Adapter

class

DeqgueStack

extends Stack {
StringDeque secretDeque;

public String top()
_{

return secretDeque.getFirst();

}
public String pop(){

String result = secretDeque.getFirst();

secretDeque.removeFirst();
return result;

}
public void push(int input)
{
secretDeque.addFirst(input);
¥

* We're using simplified
versions of Stack and
Deque in this example
that only handle Strings,
not any general object.

 Some functions may not
need much changed at all,
apart from using the right
function names,
arguments, or return
types.



Adaptation Through Inheritance

One advantage of object-oriented design is that,
through inheritance, you can make your adapted class
a recognized subclass of whatever you’re adapting it
into.

Consider our previous example — by formally extending
Stack and overriding its functions, we can treat our
DequeStack as if it were any other Stack.

The advantage is that other functions or variables who
are expecting to receive a Stack could also receive a
DequeStack and be confident that it will work as
intended, without ever know it was originally a Deque.

IntelliJ/Java tip: use the @Override tag to see the
functions available from your superclass(es) to be
overridden this way.



Recap — Following the
Summary Pattern

Design patterns are collections of best practices
for solving reoccurring design problems.

The Adapter is one such pattern for converting
structures of one type to another via translating
their interface methods.

We implemented one example of this by turning
a Deque into a Stack.

Inheritance in Java lets us make adapters that are
members of one class but contain another class.



