
CMPT 225: Data Structures & Programming
– Unit 10 –

Design Patterns & Adapters

Dr. Jack Thomas

Simon Fraser University

Spring 2021

Today’s Topics

• (Re)visiting Design Patterns

• The Adapter

• Implementing an Example

• Adapting Through Inheritance

Design Patterns

• A set of best-practices for solving a common
design problem.

• Not official, more like the consensus of the
programming community from experience. As
such, there is no one format or authority.

Image credit: https://en.wikipedia.org/wiki/Design_Patterns

• The book Design Patterns: Elements of
Reusable Object-Oriented Software
(Gamma et al., 1994) was a milestone in
computer science and the 23 patterns it
describes are still in use today.

https://en.wikipedia.org/wiki/Design_Patterns
https://en.wikipedia.org/wiki/Design_Patterns

The Adapter

• Also called the Wrapper, the Adapter pattern
is used when we want to alter the
interactions of one class to fit with another.

Image credit: https://www.amazon.ca/nonda-Adapter-T
hunderbolt-MacBook-Surface/dp/B07XYTHCXV

• The concept is similar to a
USB adapter allowing you
to charge your phone
with your laptop.

https://www.amazon.ca/nonda-Adapter-Thunderbolt-MacBook-Surface/dp/B07XYTHCXV
https://www.amazon.ca/nonda-Adapter-Thunderbolt-MacBook-Surface/dp/B07XYTHCXV
https://www.amazon.ca/nonda-Adapter-Thunderbolt-MacBook-Surface/dp/B07XYTHCXV
https://www.amazon.ca/nonda-Adapter-Thunderbolt-MacBook-Surface/dp/B07XYTHCXV
https://www.amazon.ca/nonda-Adapter-Thunderbolt-MacBook-Surface/dp/B07XYTHCXV
https://www.amazon.ca/nonda-Adapter-Thunderbolt-MacBook-Surface/dp/B07XYTHCXV
https://www.amazon.ca/nonda-Adapter-Thunderbolt-MacBook-Surface/dp/B07XYTHCXV
https://www.amazon.ca/nonda-Adapter-Thunderbolt-MacBook-Surface/dp/B07XYTHCXV
https://www.amazon.ca/nonda-Adapter-Thunderbolt-MacBook-Surface/dp/B07XYTHCXV
https://www.amazon.ca/nonda-Adapter-Thunderbolt-MacBook-Surface/dp/B07XYTHCXV
https://www.amazon.ca/nonda-Adapter-Thunderbolt-MacBook-Surface/dp/B07XYTHCXV
https://www.amazon.ca/nonda-Adapter-Thunderbolt-MacBook-Surface/dp/B07XYTHCXV
https://www.amazon.ca/nonda-Adapter-Thunderbolt-MacBook-Surface/dp/B07XYTHCXV
https://www.amazon.ca/nonda-Adapter-Thunderbolt-MacBook-Surface/dp/B07XYTHCXV

How an Adapter Works

• A wrapper class is the interface layer between
two classes, providing functions that convert data
from one into the functions used by the other.

• Generally, it will include the original class being
adapted as a hidden variable, while presenting
the functions of the new class.

• The work is filling those functions with code that
makes use of the original class’s functions.

Example: From Deque to Stack

• Say we have a Deque, but what we need is a
Stack.

• “Isn’t a Deque more general than a Stack
anyway?” Yes, but code doesn’t work like that.

• If a system is expecting to receive a Stack object,
it needs to get a Stack object. Remember ADTs
and our object-oriented principles, it’s the
expected interface methods that matter.

• So what we’ll do is make an Adapter class that
implements a Stack’s interface, so it’ll look like a
Stack from the outside, but contains a Deque
within itself.

Let’s Implement That Adapter

• We’re using simplified
versions of Stack and
Deque in this example
that only handle Strings,
not any general object.

• Some functions may not
need much changed at all,
apart from using the right
function names,
arguments, or return
types.

Adaptation Through Inheritance

• One advantage of object-oriented design is that,
through inheritance, you can make your adapted class
a recognized subclass of whatever you’re adapting it
into.

• Consider our previous example – by formally extending
Stack and overriding its functions, we can treat our
DequeStack as if it were any other Stack.

• The advantage is that other functions or variables who
are expecting to receive a Stack could also receive a
DequeStack and be confident that it will work as
intended, without ever know it was originally a Deque.

• IntelliJ/Java tip: use the @Override tag to see the
functions available from your superclass(es) to be
overridden this way.

Recap – Following the
Summary Pattern

• Design patterns are collections of best practices
for solving reoccurring design problems.

• The Adapter is one such pattern for converting
structures of one type to another via translating
their interface methods.

• We implemented one example of this by turning
a Deque into a Stack.

• Inheritance in Java lets us make adapters that are
members of one class but contain another class.

