
CMPT 225: Data Structures &
Programming – Unit 09 – Queues

Dr. Jack Thomas

Simon Fraser University

Spring 2021

Today’s Topics

• The Queue!

• ADT for the Queue

• The Queue in Java

• Implementing and Analyzing

• Something else

– Oooh! Mystery!

What is a Queue?

• Exactly what it sounds like – a queue, a line of
things in the order they were added.

• A Queue is a data structure, with an ADT and
implementations in most languages.

• It follows the “Fist In, First Out” rule, or FIFO.
• Each element added to the Queue goes behind

the previous element.
• When you start taking things out of the Queue,

you have to start with the oldest element, then
the next-oldest, and so on until you get back to
the most recent element.

Woah, Deja-Vu!

• Hah, more like Deja-Queue!
• I’m sorry.
• If you haven’t noticed, a Queue is extremely

similar to a Stack – the only difference in concept
is the Stack is FILO (first-in-last-out) and the
Queue is FIFO (first-in-first-out).

• That seemingly minor change has a notable
impact on the implementation, when a queue is
useful, etc.

• A point on terminology: when talking about
Stacks, we tend to imagine them top to bottom,
while Queues are described as front to back.

Just to Make Sure
We’re On The Same Page

• Here’s a picture of a real-life queue at an airport,
which were things we’d go to in the before-time,
when travel was possible.

Image credit: https://www.internationalairportreview.com
/article/81738/smarter-way-cut-queue/

https://www.internationalairportreview.com/article/81738/smarter-way-cut-queue/
https://www.internationalairportreview.com/article/81738/smarter-way-cut-queue/
https://www.internationalairportreview.com/article/81738/smarter-way-cut-queue/
https://www.internationalairportreview.com/article/81738/smarter-way-cut-queue/
https://www.internationalairportreview.com/article/81738/smarter-way-cut-queue/
https://www.internationalairportreview.com/article/81738/smarter-way-cut-queue/
https://www.internationalairportreview.com/article/81738/smarter-way-cut-queue/
https://www.internationalairportreview.com/article/81738/smarter-way-cut-queue/
https://www.internationalairportreview.com/article/81738/smarter-way-cut-queue/
https://www.internationalairportreview.com/article/81738/smarter-way-cut-queue/
https://www.internationalairportreview.com/article/81738/smarter-way-cut-queue/
https://www.internationalairportreview.com/article/81738/smarter-way-cut-queue/

Queue: The ADT

• A Queue stores a set of objects.

• Follows (FIFO) (first-in-first-out).

• Standard Queue operations include:
– Enqueue: Add an element to the back of the queue.

– Dequeue: Remove and return the element at the front
of the queue.

– Front: Return what’s at the front of the queue without
removing it.

– Size: How many things are in the queue?

– isEmpty: Is the queue empty? Yes or no.

Queue Examples in Software

• Resource scheduling, as anyone who’s been stuck
waiting for the print queue to clear can tell you.

• In multi-programming, keeping track of when
each program gets to submit operations to the
processor is important.

• Essentially any situation of planning out a
sequence of future actions, which makes sense
with how Stacks are good at tracking a history
going backward.

Queue in Java

• Java has a standard Queue in java.util, let’s try
it out!

• Wait, what?

Queue in Java

• It turns out, the standard Queue in Java is
actually an interface, meaning it exists to be
implemented by other Queues, but is not a
standardly useable class itself.

• In practice, LinkedList is a Queue, and even
implements the Queue interface.

• This is a useful reminder that there’s a difference
between the ADTs for various data structures
and their concrete implementations in the code
– the LinkedList Java class is a Queue, but is one
instance of the Queue idea, which exists beyond
Java.

Implementing a List-Based Queue

• Let’s implement our own version of Queue in
Java for storing characters.

Implementing a List-Based Queue

Implementing a List-Based Queue

Analyzing Our Queue

• Time analysis per method:
– size: O(1)

– isEmpty: O(1)

– front: O(1)

– enqueue: O(1)

– dequeue: O(1)

• The only drawback: each element takes up much
more memory space than usual by being stored
in a node object.

• We could try implementing with a list instead!

That’s It, Right?

• Stacks and Queues seem to cover what you’d
need from at least this type of data structure.

• There’s a linear ordering of elements, and
you’re retrieving either the oldest or most
recent.

• What’s left? Pulling at random from the
middle?

• No.

Deques: The Forbidden Queue

• They’re not forbidden, they’re just annoying
to say aloud. (Pronounced “deck”, apparently).

• They’re Double-Ended Queues, meaning you
can take either the first or the last element.

• Useful when we might want to remove
elements from either end – perhaps a history
function that can be read backward or
forward.

Deque: The ADT

• A Deque stores a set of objects.
• Follows neither FIFO nor FILO.
• Standard Deque operations include:

– addFirst: Inserts a new element at the head.
– addLast: Inserts a new element at the tail
– removeFirst: Removes and returns the element at the

head.
– removeLast: Removes and returns the element at the tail.
– getFirst: Returns (but doesn’t remove) the element at the

head.
– getLast: Returns (but doesn’t remove) the element at the

tail.
– Size: How many things are in the queue?
– isEmpty: Is the queue empty? Yes or no.

The Deque and Java

• Java has a Deque interface, the same as Queue,
but it also has the ArrayDeque class that works
fine if you just want to use that.

• If we want to make our own, a doubly-linked list
makes the most sense here, since we want to pull
from both the head and tail.

• We should remember that adding sentinel nodes
(blank header and trailer nodes) will make
implementing our functions easier as well.

A Good Moment to Pause and Reflect

• The material so far has provided most of the
foundations for what data structures and algorithms
are in programming and how we use them.

• So far we’ve covered:
– The basics of object oriented programming.
– Abstract data types, the concept(s) behind data structures

and algorithms.
– The primitive structures like arrays and lists that form the

basis of other structures.
– A handful of algorithms for accessing or sorting data

structures and tools like Big-Oh notation to analyze and
compare their run-times.

– A set of related standard data structures (stacks, queues,
deques).

The Course Moving Forward

• Much of what comes next builds on these
foundations, taking the ideas introduced here into
different and more complicated directions.

• We’ll be seeing more data structures for sorting data in
more deliberate ways (trees, heaps…), more
algorithms for new functions (searches) or alternative
solutions (sorts), design patterns for useful
programming tools, and plenty more runtime analysis.

• The next assignment will try to encapsulate all of these
fundamentals, so take the opportunity to check your
understanding before we proceed further.

Recap – Last In, Last Out

• We introduced the Queue, the cousin of the
Stack, governed by FIFO (first-in-first-out).

• We learned how Queue is implemented in
Java, including its relation to the LinkedList.

• We implemented our own list-based Queue.

• We introduced the Double-Sided Queue (the
Deque).

• Finally, we reviewed the course up to this
point.

