CMPT 225: Data Structures &
Programming — Unit 08 — Stacks

Dr. Jack Thomas
Simon Fraser University
Spring 2021

Today’s Topics

The Stack!

ADT for the Stack

The Stack in Java
Implementing and Analyzing

What is a Stack?

Exactly what it sounds like — a stack, a set of
things piled up on each other.

A Stack is a data structure, with an ADT and
implementations in most languages.

It follows the “First In, Last Out” rule, or FILO.

Each element added to the Stack buries the
previous element.

When you go to start taking things off the stack,
you have to start with the most recent element,
then the next-most recent, and so on until you
get down to the first element.

Think of a PEZ Dispenser

POCKET ARTICLE DISPENSING CONTAINER

* Wait has anyone here even used a PEZ dispenser?

* There’s got to be a less embarrassingly old-timey
example.

Image credit: https://www.smithsonianmag.com/innovation/how-pez-e
volved-from-anti-smoking-tool-to-beloved-collectors-item-180976545/

https://www.smithsonianmag.com/innovation/how-pez-evolved-from-anti-smoking-tool-to-beloved-collectors-item-180976545/
https://www.smithsonianmag.com/innovation/how-pez-evolved-from-anti-smoking-tool-to-beloved-collectors-item-180976545/
https://www.smithsonianmag.com/innovation/how-pez-evolved-from-anti-smoking-tool-to-beloved-collectors-item-180976545/
https://www.smithsonianmag.com/innovation/how-pez-evolved-from-anti-smoking-tool-to-beloved-collectors-item-180976545/
https://www.smithsonianmag.com/innovation/how-pez-evolved-from-anti-smoking-tool-to-beloved-collectors-item-180976545/
https://www.smithsonianmag.com/innovation/how-pez-evolved-from-anti-smoking-tool-to-beloved-collectors-item-180976545/
https://www.smithsonianmag.com/innovation/how-pez-evolved-from-anti-smoking-tool-to-beloved-collectors-item-180976545/
https://www.smithsonianmag.com/innovation/how-pez-evolved-from-anti-smoking-tool-to-beloved-collectors-item-180976545/
https://www.smithsonianmag.com/innovation/how-pez-evolved-from-anti-smoking-tool-to-beloved-collectors-item-180976545/
https://www.smithsonianmag.com/innovation/how-pez-evolved-from-anti-smoking-tool-to-beloved-collectors-item-180976545/
https://www.smithsonianmag.com/innovation/how-pez-evolved-from-anti-smoking-tool-to-beloved-collectors-item-180976545/
https://www.smithsonianmag.com/innovation/how-pez-evolved-from-anti-smoking-tool-to-beloved-collectors-item-180976545/
https://www.smithsonianmag.com/innovation/how-pez-evolved-from-anti-smoking-tool-to-beloved-collectors-item-180976545/
https://www.smithsonianmag.com/innovation/how-pez-evolved-from-anti-smoking-tool-to-beloved-collectors-item-180976545/
https://www.smithsonianmag.com/innovation/how-pez-evolved-from-anti-smoking-tool-to-beloved-collectors-item-180976545/
https://www.smithsonianmag.com/innovation/how-pez-evolved-from-anti-smoking-tool-to-beloved-collectors-item-180976545/
https://www.smithsonianmag.com/innovation/how-pez-evolved-from-anti-smoking-tool-to-beloved-collectors-item-180976545/
https://www.smithsonianmag.com/innovation/how-pez-evolved-from-anti-smoking-tool-to-beloved-collectors-item-180976545/
https://www.smithsonianmag.com/innovation/how-pez-evolved-from-anti-smoking-tool-to-beloved-collectors-item-180976545/
https://www.smithsonianmag.com/innovation/how-pez-evolved-from-anti-smoking-tool-to-beloved-collectors-item-180976545/
https://www.smithsonianmag.com/innovation/how-pez-evolved-from-anti-smoking-tool-to-beloved-collectors-item-180976545/
https://www.smithsonianmag.com/innovation/how-pez-evolved-from-anti-smoking-tool-to-beloved-collectors-item-180976545/
https://www.smithsonianmag.com/innovation/how-pez-evolved-from-anti-smoking-tool-to-beloved-collectors-item-180976545/
https://www.smithsonianmag.com/innovation/how-pez-evolved-from-anti-smoking-tool-to-beloved-collectors-item-180976545/
https://www.smithsonianmag.com/innovation/how-pez-evolved-from-anti-smoking-tool-to-beloved-collectors-item-180976545/
https://www.smithsonianmag.com/innovation/how-pez-evolved-from-anti-smoking-tool-to-beloved-collectors-item-180976545/

Stack: The ADT

e A Stack stores a set of objects.
* Follows FILO (first-in-last-out).

e Standard Stack operations include:
— Push: Add an element to the top of the Stack.
— Pop: Remove the top element.

— Top: Return what’s on top of the stack without
removing it.

— Size: How many things are on the Stack?
— Empty: Is the stack empty? Yes or no.

Stack Examples In Software

* Your web browser back button, which pushes
each page you visit onto the stack, then pops
them back off again from latest to oldest.

* Most undo functions work the same way,
saving a record of each action taken so that
the latest action is always on top.

» Stacks are useful in general for tracking a
linear history of events you might have to
start moving backward through.

Stack in Java

e Java has a standard Stack in java.util, which takes in
Java objects and includes methods like push(), pop(),
peek() (like top but a funnier name), size(), and
empty().

import java.util.Stack;

public class Main {

public static void main(String[] args)

{
Stack<Integer> exampleStack = new Stack<Integer>();
exampleStack.push(item: 1);
exampleStack.push(item: 2);
exampleStack.push(item: 3);
System.out.println(exampleStack.pop()); 3
System.out.println(exampleStack.pop()); 2
System.out.println(exampleStack.pop()); 1
F

Stacks, Arrays, and Lists

A Stack is one level more complex than an array
or list. It defines how the data within the
structure is accessed, but not how it’s stored.

For that storage, do Stacks use an array, or a list?

It can use either. You can build a Stack using an
array or a list as the basis, so long as the methods
like push() and pop() work as expected.

The Java Stack is actually based on a Vector, an
old legacy class that works like a growable array.

Implementing an Array-Based Stack

e Let’s implement our own version of Stack in

Java for storing integers.

class ArrayStack<Integer> {

protected int capacilty;

public static final int DEFAULTCAPACITY = 1000;

protected int elements[];

protected int top = -1;

public ArrayStack() {
this(DEFAULTCAPACITY);

b

public ArrayStack(int cap) {
capaclity = cap;
elements = new int[capacity]:

public int size() {
return (top + 1);

b

public boolean isEmpty() {
return (top < 0);

¥

Implementing an Array-Based Stack

public void push(int element) throws RuntimeException {
if (size() == capacity)
throw new RuntimeException("Stack is full.");
elements[++top] = element;
¥
public int top() throws RuntimeException {
if (isEmpty())
throw new RuntimeException("Stack is empty");
return elements[top];
¥
public int pop() throws RuntimeException {
int element;
if (isEmpty())
throw new RuntimeException("Stack is empty.");
element = elements[top];
top--;

fSTor non-primitives elements!| ton--

AL LALVE S = LENE] L2 | LU 4 L L o S S

return element;

Implementing an Array-Based Stack

ArrayStack<Integer> testStack = new ArrayStack<Integer>():
testStack.push(element 2);

testStack.push(element 4);

testStack.push(element: 3);
System.ovt.println(testStack.pop());
System.ovt.println(testStack.pop());
System.ouvt.println(testStack.pop());

]

Analyzing Our Stack

* Time analysis per method:
— size: O(1)
— isEmpty: O(1)
— top: O(1)
— push: O(1)
— pop: O(1)
* The only drawback: array requires a fixed size on

creation, meaning it’s either full or wasting
memory.

* We could try implementing with a list instead!

Recap — You've Reached
The First Slide | Made!

Stacks are a type of data structure that follows
the first-in-last-out rule for storing objects.

Useful for tracking things in reverse order, like a
history of events.

Java has a built-in Stack class you can use.

You can also define your own Stack, which can be
based on an array or a list (or a vector, if you're
old-school).

Try making your own Stack at home by just
leaving stuff in piles on the floor!

