
CMPT 225: Data Structures &
Programming – Unit 08 – Stacks

Dr. Jack Thomas

Simon Fraser University

Spring 2021

Today’s Topics

• The Stack!

• ADT for the Stack

• The Stack in Java

• Implementing and Analyzing

What is a Stack?

• Exactly what it sounds like – a stack, a set of
things piled up on each other.

• A Stack is a data structure, with an ADT and
implementations in most languages.

• It follows the “First In, Last Out” rule, or FILO.
• Each element added to the Stack buries the

previous element.
• When you go to start taking things off the stack,

you have to start with the most recent element,
then the next-most recent, and so on until you
get down to the first element.

Think of a PEZ Dispenser

• Wait has anyone here even used a PEZ dispenser?

• There’s got to be a less embarrassingly old-timey
example.
Image credit: https://www.smithsonianmag.com/innovation/how-pez-e
volved-from-anti-smoking-tool-to-beloved-collectors-item-180976545/

https://www.smithsonianmag.com/innovation/how-pez-evolved-from-anti-smoking-tool-to-beloved-collectors-item-180976545/
https://www.smithsonianmag.com/innovation/how-pez-evolved-from-anti-smoking-tool-to-beloved-collectors-item-180976545/
https://www.smithsonianmag.com/innovation/how-pez-evolved-from-anti-smoking-tool-to-beloved-collectors-item-180976545/
https://www.smithsonianmag.com/innovation/how-pez-evolved-from-anti-smoking-tool-to-beloved-collectors-item-180976545/
https://www.smithsonianmag.com/innovation/how-pez-evolved-from-anti-smoking-tool-to-beloved-collectors-item-180976545/
https://www.smithsonianmag.com/innovation/how-pez-evolved-from-anti-smoking-tool-to-beloved-collectors-item-180976545/
https://www.smithsonianmag.com/innovation/how-pez-evolved-from-anti-smoking-tool-to-beloved-collectors-item-180976545/
https://www.smithsonianmag.com/innovation/how-pez-evolved-from-anti-smoking-tool-to-beloved-collectors-item-180976545/
https://www.smithsonianmag.com/innovation/how-pez-evolved-from-anti-smoking-tool-to-beloved-collectors-item-180976545/
https://www.smithsonianmag.com/innovation/how-pez-evolved-from-anti-smoking-tool-to-beloved-collectors-item-180976545/
https://www.smithsonianmag.com/innovation/how-pez-evolved-from-anti-smoking-tool-to-beloved-collectors-item-180976545/
https://www.smithsonianmag.com/innovation/how-pez-evolved-from-anti-smoking-tool-to-beloved-collectors-item-180976545/
https://www.smithsonianmag.com/innovation/how-pez-evolved-from-anti-smoking-tool-to-beloved-collectors-item-180976545/
https://www.smithsonianmag.com/innovation/how-pez-evolved-from-anti-smoking-tool-to-beloved-collectors-item-180976545/
https://www.smithsonianmag.com/innovation/how-pez-evolved-from-anti-smoking-tool-to-beloved-collectors-item-180976545/
https://www.smithsonianmag.com/innovation/how-pez-evolved-from-anti-smoking-tool-to-beloved-collectors-item-180976545/
https://www.smithsonianmag.com/innovation/how-pez-evolved-from-anti-smoking-tool-to-beloved-collectors-item-180976545/
https://www.smithsonianmag.com/innovation/how-pez-evolved-from-anti-smoking-tool-to-beloved-collectors-item-180976545/
https://www.smithsonianmag.com/innovation/how-pez-evolved-from-anti-smoking-tool-to-beloved-collectors-item-180976545/
https://www.smithsonianmag.com/innovation/how-pez-evolved-from-anti-smoking-tool-to-beloved-collectors-item-180976545/
https://www.smithsonianmag.com/innovation/how-pez-evolved-from-anti-smoking-tool-to-beloved-collectors-item-180976545/
https://www.smithsonianmag.com/innovation/how-pez-evolved-from-anti-smoking-tool-to-beloved-collectors-item-180976545/
https://www.smithsonianmag.com/innovation/how-pez-evolved-from-anti-smoking-tool-to-beloved-collectors-item-180976545/
https://www.smithsonianmag.com/innovation/how-pez-evolved-from-anti-smoking-tool-to-beloved-collectors-item-180976545/
https://www.smithsonianmag.com/innovation/how-pez-evolved-from-anti-smoking-tool-to-beloved-collectors-item-180976545/
https://www.smithsonianmag.com/innovation/how-pez-evolved-from-anti-smoking-tool-to-beloved-collectors-item-180976545/

Stack: The ADT

• A Stack stores a set of objects.

• Follows FILO (first-in-last-out).

• Standard Stack operations include:
– Push: Add an element to the top of the Stack.

– Pop: Remove the top element.

– Top: Return what’s on top of the stack without
removing it.

– Size: How many things are on the Stack?

– Empty: Is the stack empty? Yes or no.

Stack Examples In Software

• Your web browser back button, which pushes
each page you visit onto the stack, then pops
them back off again from latest to oldest.

• Most undo functions work the same way,
saving a record of each action taken so that
the latest action is always on top.

• Stacks are useful in general for tracking a
linear history of events you might have to
start moving backward through.

Stack in Java

• Java has a standard Stack in java.util, which takes in
Java objects and includes methods like push(), pop(),
peek() (like top but a funnier name), size(), and
empty().

Stacks, Arrays, and Lists

• A Stack is one level more complex than an array
or list. It defines how the data within the
structure is accessed, but not how it’s stored.

• For that storage, do Stacks use an array, or a list?

• It can use either. You can build a Stack using an
array or a list as the basis, so long as the methods
like push() and pop() work as expected.

• The Java Stack is actually based on a Vector, an
old legacy class that works like a growable array.

Implementing an Array-Based Stack

• Let’s implement our own version of Stack in
Java for storing integers.

Implementing an Array-Based Stack

Implementing an Array-Based Stack

Analyzing Our Stack

• Time analysis per method:
– size: O(1)

– isEmpty: O(1)

– top: O(1)

– push: O(1)

– pop: O(1)

• The only drawback: array requires a fixed size on
creation, meaning it’s either full or wasting
memory.

• We could try implementing with a list instead!

Recap – You’ve Reached
The First Slide I Made!

• Stacks are a type of data structure that follows
the first-in-last-out rule for storing objects.

• Useful for tracking things in reverse order, like a
history of events.

• Java has a built-in Stack class you can use.
• You can also define your own Stack, which can be

based on an array or a list (or a vector, if you’re
old-school).

• Try making your own Stack at home by just
leaving stuff in piles on the floor!

