
CMPT 225: Data Structures &
Programming – Unit 07 – Analysis

Dr. Jack Thomas

Simon Fraser University

Spring 2021

Today’s Topics

• Analyzing Like a Programmer

• Seven Important Functions

• The Algorithm Analysis Toolbox

– It’s Big-Oh

What Does It Mean To Be A
“Good Programmer”?

• Not a philosophy question.

• Essentially, only half the job is the raw
knowledge of things like syntax, tools, and yes,
structures and algorithms. The How.

• The other half is knowing the When, that is,
when to apply which tools to which situations
to produce the best results.

• To do this, we need to define how
programmers measure performance.

Image credit: https://en.
wikipedia.org/wiki/T
he_Thinker

https://en.wikipedia.org/wiki/The_Thinker
https://en.wikipedia.org/wiki/The_Thinker
https://en.wikipedia.org/wiki/The_Thinker
https://en.wikipedia.org/wiki/The_Thinker
https://en.wikipedia.org/wiki/The_Thinker
https://en.wikipedia.org/wiki/The_Thinker

Time And Space: The Enemy

• It is not enough that your code should work, it
should also be optimal in terms of time it
takes to run and space it takes to store.

• Of the two, optimizing for time is usually the
bigger challenge.

• Therefore, we’ll focus on measuring the speed
of the algorithms we base our functions off of.

Measuring Performance:
The Experimental Approach

• One way to test the performance of a system
is to literally test it – run trials with different
inputs, measuring time to completion.

Measuring Performance:
The Experimental Approach

• Generally, the goal is to determine the
dependence of running time on input size
through plotting the different trials and
searching for a trend.

• Sometimes the effect of certain input features
(e.g. sorted vs. unsorted, the colour of an
image, etc) can also be discovered this way.

Experimental Drawbacks

• While experiments give us real results, there are
also significant limitations:
– Can normally only test a sample of all possible inputs.
– Hard to compare two algorithms generally with all

the details of their specific implementations making
noise.

– Hard to predict if performance will be similar for
different hardware or software environments.

– Can only reliably study fully implemented systems,
which makes design a lot more difficult!

• We need a way to predict performance without
having to run the test first…

Theoretical Algorithm Analysis

• The process of analyzing the high-level
pseudocode for an algorithm to predict its
time-efficiency, within some bounds of
uncertainty.

• Has a concrete procedure, including a
notation it’s written in and standard
measurements for comparison between
algorithms.

• But first, let’s introduce some basic elements.

Algorithm Pseudocode

• What I’ve been doing when I post Algorithms.

• A high-level description of the algorithm,
distinct from any one programming language.

• The syntax isn’t entirely official, though we’ll
be using the version from the recommended
textbook.

Algorithm Pseudocode

• Control flow
– if … then … *else …+
– while … do …
– repeat … until …
– for … do …
– Indentation instead of

brackets

• Method declaration
– Algorithm method (arg [,

arg…+)
 Input…
 Output …

• Method call
– var.method(arg [, arg…+)

• Return value
– return expression

• Expressions
– <- assignment (like = in

Java)

– = equals (like ==)

– n2 Math formatting
allowed

Primitive Operations

• A variety of basic actions a program can take are abstracted
together as primitive operations.

• These include:
– Assigning a value to a variable
– Calling a method
– Performing an arithmetic operation (e.g. adding)
– Comparing two numbers
– Indexing into an array
– Following an object reference
– Returning from a method.

• These operations may take different amounts of actual time
to execute, but at the speed and scale computer systems
operate at, these differences can be ignored.

Counting Primitive Operations

• If we treat all primitive operations as costing
some constant amount of time, our basis for
measuring an algorithm’s efficiency can be simply
counting the number of primitive operations.

• The actual time these operations will take will
vary a bit from each other, may vary depending
on the inputs they operate on, and will certainly
vary depending on the hardware or software
environment, but there’s still a strong correlation.

The Seven Functions of
Highly Effective Programmers

• Nobody remembers this book?

• I am so old.
Image credit: https://en.wikipedia.org/wiki/The_7_Habits_of_Highly_Effective_People

https://en.wikipedia.org/wiki/The_7_Habits_of_Highly_Effective_People
https://en.wikipedia.org/wiki/The_7_Habits_of_Highly_Effective_People

Okay Seriously, the Seven Functions

• Another basic element we’ll need is knowing how
to represent different growth rates as different
kinds of mathematical functions.

• When comparing algorithms, we don’t usually
need to narrow down their runtime to a precise
amount, just a general order of magnitude.

• If you plotted the trial data from running the
implemented system, this would be the kind of
trendline that would best fit the graph of trial
results.

• This will require some
M A T H R E V I E W

1. Constant

Image credit: https://www.wolframalpha.com/

https://www.wolframalpha.com/
https://www.wolframalpha.com/

1. Constant

• f(n) = c

• c is some constant value, meaning that no
matter what value n is, the result will be c.

• In analysis terms, this usually means the
function doesn’t care how big the input is, it’ll
always take the same amount of time – say,
checking if an array is empty or not.

2. Logarithmic

Image credit: https://www.wolframalpha.com/

https://www.wolframalpha.com/
https://www.wolframalpha.com/

2. Logarithmic

• f(n) = logbn
• b is some constant, the base. The rule of thumb is

the result will be equal to the number of times
that b can divide n.

• In computer science, base 2 is the most common
log, to the point that it’s sometimes just written
as log n (some other fields do base 10 as log n, so
watch out!).

• In analysis, common for functions that navigate
smartly through data – a binary search, for
example.

3. Linear

Image credit: https://www.wolframalpha.com/

https://www.wolframalpha.com/
https://www.wolframalpha.com/

3. Linear

• f(n) = n

• As n increases, the result increases
proportionately with it.

• Typically true of functions which need to
perform some constant task for every input,
like printing every name in an array of names.

4. N-Log-N

Image credit: https://www.wolframalpha.com/

https://www.wolframalpha.com/
https://www.wolframalpha.com/

4. N-Log-N

• f(n) = n log n

• As n increases, the result increases by the
product of n and log n.

• In analysis terms, a little slower than linear,
but a lot faster than n*n (quadratic), so often
the result when a function has a clever way of
avoiding a quadratic outcome. A lot of sorting
cases end up here.

5. Quadratic

Image credit: https://www.wolframalpha.com/

https://www.wolframalpha.com/
https://www.wolframalpha.com/

5. Quadratic

• f(n) = n2

• As n increases, the result is the product of n
multiplied with itself (as in, n squared).

• Generally true of functions where every input
will have to do something with every other
input – say, applying insertion sort to an array
of numbers in reverse order.

6. Cubic (and other Polynomials)

Image credit: https://www.wolframalpha.com/

https://www.wolframalpha.com/
https://www.wolframalpha.com/

6. Cubic (and other Polynomials)

• f(n) = nx

• Just like quadratic, except more acute.

• While there’s a material difference between
different degrees of polynomials, in a practical
sense, it’s usually more important that you’ve
ended up in this range at all.

7. Exponential

Image credit: https://www.wolframalpha.com/

https://www.wolframalpha.com/
https://www.wolframalpha.com/

7. Exponential

• f(n) = bn

• b is some constant base, and every increase in
n increases the result… well, exponentially.

• Typically the worst-case in analysis terms.
Large values of n will make the value of b
irrelevant, and become intractable even for
powerful processors. To be avoided.

The Worst Case Scenario

• Which function best matches the time
performance for a given algorithm may vary
depending on the inputs.

• Knowing the average might be useful, but it’s
very hard to predict without knowing the nature
of the inputs each implementation of the
algorithm will run on.

• Easier (and often more useful) to establish an
upper bound – the performance for the most
challenging possible set of inputs.

You Knew It Was Coming:
Asymptotic Analysis & Big-Oh Notation
• The process of finding the function that bounds the

worst-case time performance of an algorithm is called
Asymptotic Analysis.

• By studying the pseudocode description of an
algorithm, we identify where the running time will
increase the fastest with every new input (a loop that
compares every value in an array with every other
value, for example).

• We typically don’t need to work out the entire
function, we just need the part that grows the fastest.

• The way we write this function is Big-Oh Notation.

Defining Big-Oh

• Let f(n) and g(n) be functions mapping
nonegative integers to real numbers.

• We say that f(n) is O(g(n)) if there is a real
constant c > 0 and an integer constant n0 >= 1
such that:

 f(n) <= cg(n), for n >= n0

• Therefore, we can say f(n) is big-Oh of g(n), or
f(n) is order of g(n), or just f(n) is O(n).

Defining Big-Oh

• What does that mean?

• It means that for any number of
inputs, f(n) (the running time of
our actual function for some n
number of inputs) will be less
than some constant multiplied
by n.

• So f(n) will approach g(n), but
never pass it, meaning g(n)
bounds f(n), or f(n)
asymptotically approaches g(n).

Image credit: https://www.desmos.com/calculator

If f(n) were 2x+3, we can set c to 6,
and make g(n) 6x, and for n>= 1,
g(n) > f(n), so f(n) is O(n).

https://www.desmos.com/calculator
https://www.desmos.com/calculator

Big-Omega and Big-Theta

• If Big-Oh is “less-than or equal-to”, Big-Omega
is “greater-than or equal-to” – the lower
bound, or best possible time performance.

• There’s also Big-Theta, which is the function
that maps to the exact growth rate of our
function (at least for some stretch of inputs),
and will be between the two other bounds.

• Sometimes all three are the same function!

Asymptotic Analysis

• When deciding between two algorithms to solve
a problem, the one with the lower O(x) will be
asymptotically better.

• For low input values, or for non-worst-case inputs
(say, a series of numbers that happens to be
sorted or nearly-sorted), an asymptotically worse
function could perform better.

• As the number of inputs increases, the
asymptotically superior function will always
outperform the competition.

Let’s Use Big-Oh!

Algorithm prefixAverages1(X):
 Input: An n-element array X
 of numbers.
 Output: An n-element array A
 of numbers such that
 A[i] is the average of
 elements X*0+,…,X*i+.
 Let A be an array of n numbers.
 for i <- 0 to n-1 do
 a <- 0
 for j <- 0 to i do
 a <- a + X[j]
 A[i] <- a/(i+1)
 return array A

• Initializing and returning A
takes a constant number of
primitive operations per
element, so O(n).

• Two nested for loops
controlled by counters, both
of which are linearly
dependent on n (that is, as n
goes up, both counters go up
proportionately), making
them take n * n, or O(n2)

Let’s Use Big-Oh!

Algorithm prefixAverages2(X):
 Input: An n-element
 array X of numbers.
 Output: An n-element
 array A of numbers
 such that A[i] is the
 average of
 elements
 X*0+,…,X*i+.
 Let A be an array of n
 numbers.
 for i <- 0 to n-1 do
 s <- s + X[i]
 A[i] <- s/(i+1)
 return array A

• Initializing and returning
an array takes O(n) again.

• Initializing the variable s
takes O(1).

• There’s just one for loop,
whose counter is
controlled by n. Thus
O(n).

• Since O(n) < O(n2),
prefixAverages2 is
asymptotically better.

Understanding the Comparison

• As the number of inputs (n) goes up, the fastest-
growing part of each method’s run-time function
will come to dominate the other parts.

• Even if prefixAverage2’s full runtime ended up
being 100 + n, while prefixAverage1’s was just 5 +
n2, once n > 10, prefixAverage2 would quickly
overtake the competition.

• That’s why the overall O(x) for an algorithm is the
highest of the seven mathematical functions we
reviewed, rather than including all the primitive
operations and lesser terms.

Tips for Analyzing Algorithms

• Credit to Tom Shermer for these rules of
thumb.

• When analyzing an algorithm’s run-time, start
by determining what n will be – what is the
input whose growth controls the run time of
the function?

• If there’s an array or list involved, it’s probably
their size.

Calls

• Simple assignment calls, like x = 6, are
constant.

• Calls to functions, like x = array.length, take as
long as that function call takes.

– X = array.length would take O(1)

– X = max(array, array.length) would take O(n)

Recursion, Conditionals, Loops

• Recursive functions take the time of the rest
of the function, multiplied by some value n,
depending on how the recursion is defined.

• For conditionals (if/else), assume the worst
condition triggers (in terms of time), and
don’t forget to measure the time the
comparison takes!

• Loops multiply their body by the number of
times their conditional will run.

Work Inside-Out

• Look for the inner-most loops (check the
indentation) and start counting primitive
operations.

• As you move to the outer loops, remember
that they’ll do everything in the inner loop for
every term of the loop.

• A lot of loops end up adding n to the runtime,
if they run for all inputs, unless they run in a
smart way to only have to run log n.

Recap – Analyzing the Lecture
• Good programming means writing optimal (typically,

time-efficient) code.
• We measure time by analyzing algorithm pseudocode,

counting primitive operations, and matching a growth
function to the worst case scenario.

• This function is described by Big-Oh notation, along
with Big-Omega for best-case and Big-Theta for the
actual growth rate.

• By comparing Big-Oh measurements for different
algorithms, we can determine which one is
asymptotically better, which is our normal standard
for the optimal approach.

• Going forward, you can start analyzing the algorithms
we discuss to make smart decisions about which ones
to use!

