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Today’s Topics 

• Analyzing Like a Programmer 

• Seven Important Functions 

• The Algorithm Analysis Toolbox 

– It’s Big-Oh 



What Does It Mean To Be A  
“Good Programmer”? 

• Not a philosophy question. 

• Essentially, only half the job is the raw 
knowledge of things like syntax, tools, and yes, 
structures and algorithms. The How. 

• The other half is knowing the When, that is, 
when to apply which tools to which situations 
to produce the best results. 

• To do this, we need to define how 
programmers measure performance. 
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Time And Space: The Enemy 

• It is not enough that your code should work, it 
should also be optimal in terms of time it 
takes to run and space it takes to store. 

• Of the two, optimizing for time is usually the 
bigger challenge. 

• Therefore, we’ll focus on measuring the speed 
of the algorithms we base our functions off of. 



Measuring Performance:  
The Experimental Approach 

• One way to test the performance of a system 
is to literally test it – run trials with different 
inputs, measuring time to completion. 



Measuring Performance:  
The Experimental Approach 

• Generally, the goal is to determine the 
dependence of running time on input size 
through plotting the different trials and 
searching for a trend.  

• Sometimes the effect of certain input features 
(e.g. sorted vs. unsorted, the colour of an 
image, etc) can also be discovered this way. 



Experimental Drawbacks 

• While experiments give us real results, there are 
also significant limitations: 
– Can normally only test a sample of all possible inputs. 
– Hard to compare two algorithms generally with all 

the details of their specific implementations making 
noise. 

– Hard to predict if performance will be similar for 
different hardware or software environments. 

– Can only reliably study fully implemented systems, 
which makes design a lot more difficult! 

• We need a way to predict performance without 
having to run the test first… 



Theoretical Algorithm Analysis 

• The process of analyzing the high-level 
pseudocode for an algorithm to predict its 
time-efficiency, within some bounds of 
uncertainty. 

• Has a concrete procedure, including a 
notation it’s written in and standard 
measurements for comparison between 
algorithms. 

• But first, let’s introduce some basic elements. 



Algorithm Pseudocode 

• What I’ve been doing when I post Algorithms. 

• A high-level description of the algorithm, 
distinct from any one programming language. 

• The syntax isn’t entirely official, though we’ll 
be using the version from the recommended 
textbook. 



Algorithm Pseudocode 

• Control flow 
– if … then … *else …+ 
– while … do … 
– repeat … until … 
– for … do … 
– Indentation instead of 

brackets 

• Method declaration 
– Algorithm method (arg [, 

arg…+) 
 Input… 
 Output … 

• Method call 
– var.method(arg [, arg…+) 

• Return value 
– return expression 

• Expressions 
– <- assignment (like = in 

Java) 

– = equals (like ==) 

– n2 Math formatting 
allowed 



Primitive Operations 

• A variety of basic actions a program can take are abstracted 
together as primitive operations. 

• These include: 
– Assigning a value to a variable 
– Calling a method 
– Performing an arithmetic operation (e.g. adding) 
– Comparing two numbers 
– Indexing into an array 
– Following an object reference 
– Returning from a method. 

• These operations may take different amounts of actual time 
to execute, but at the speed and scale computer systems 
operate at, these differences can be ignored. 



Counting Primitive Operations 

• If we treat all primitive operations as costing 
some constant amount of time, our basis for 
measuring an algorithm’s efficiency can be simply 
counting the number of primitive operations. 

• The actual time these operations will take will 
vary a bit from each other, may vary depending 
on the inputs they operate on, and will certainly 
vary depending on the hardware or software 
environment, but there’s still a strong correlation. 



The Seven Functions of  
Highly Effective Programmers 

• Nobody remembers this book? 

 

 

 

 

 

 

• I am so old. 
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Okay Seriously, the Seven Functions 

• Another basic element we’ll need is knowing how 
to represent different growth rates as different 
kinds of mathematical functions. 

• When comparing algorithms, we don’t usually 
need to narrow down their runtime to a precise 
amount, just a general order of magnitude. 

• If you plotted the trial data from running the 
implemented system, this would be the kind of 
trendline that would best fit the graph of trial 
results. 

• This will require some  
M A T H   R E V I E W 



1. Constant 
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1. Constant 

• f(n) = c 

• c is some constant value, meaning that no 
matter what value n is, the result will be c. 

• In analysis terms, this usually means the 
function doesn’t care how big the input is, it’ll 
always take the same amount of time – say, 
checking if an array is empty or not.  



2. Logarithmic 
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2. Logarithmic 

• f(n) = logbn 
• b is some constant, the base. The rule of thumb is 

the result will be equal to the number of times 
that b can divide n. 

• In computer science, base 2 is the most common 
log, to the point that it’s sometimes just written 
as log n (some other fields do base 10 as log n, so 
watch out!).  

• In analysis, common for functions that navigate 
smartly through data – a binary search, for 
example. 
 



3. Linear 
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3. Linear 

• f(n) = n 

• As n increases, the result increases 
proportionately with it. 

• Typically true of functions which need to 
perform some constant task for every input, 
like printing every name in an array of names. 

 



4. N-Log-N 
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4. N-Log-N 

• f(n) = n log n 

• As n increases, the result increases by the 
product of n and log n. 

• In analysis terms, a little slower than linear, 
but a lot faster than n*n (quadratic), so often 
the result when a function has a clever way of 
avoiding a quadratic outcome. A lot of sorting 
cases end up here. 



5. Quadratic 
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5. Quadratic 

• f(n) = n2 

• As n increases, the result is the product of n 
multiplied with itself (as in, n squared). 

• Generally true of functions where every input 
will have to do something with every other 
input – say, applying insertion sort to an array 
of numbers in reverse order. 



6. Cubic (and other Polynomials) 
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6. Cubic (and other Polynomials) 

• f(n) = nx 

• Just like quadratic, except more acute. 

• While there’s a material difference between 
different degrees of polynomials, in a practical 
sense, it’s usually more important that you’ve 
ended up in this range at all. 



7. Exponential 
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7. Exponential 

• f(n) = bn 

• b is some constant base, and every increase in 
n increases the result… well, exponentially. 

• Typically the worst-case in analysis terms. 
Large values of n will make the value of b 
irrelevant, and become intractable even for 
powerful processors. To be avoided. 

 



The Worst Case Scenario 

• Which function best matches the time 
performance for a given algorithm may vary 
depending on the inputs. 

• Knowing the average might be useful, but it’s 
very hard to predict without knowing the nature 
of the inputs each implementation of the 
algorithm will run on. 

• Easier (and often more useful) to establish an 
upper bound – the performance for the most 
challenging possible set of inputs. 

 



You Knew It Was Coming:  
Asymptotic Analysis & Big-Oh Notation 
• The process of finding the function that bounds the 

worst-case time performance of an algorithm is called 
Asymptotic Analysis. 

• By studying the pseudocode description of an 
algorithm, we identify where the running time will 
increase the fastest with every new input (a loop that 
compares every value in an array with every other 
value, for example). 

• We typically don’t need to work out the entire 
function, we just need the part that grows the fastest. 

• The way we write this function is Big-Oh Notation. 



Defining Big-Oh 

• Let f(n) and g(n) be functions mapping 
nonegative integers to real numbers. 

• We say that f(n) is O(g(n)) if there is a real 
constant c > 0 and an integer constant n0 >= 1 
such that: 

  f(n) <= cg(n), for n >= n0 

• Therefore, we can say f(n) is big-Oh of g(n), or 
f(n) is order of g(n), or just f(n) is O(n). 



Defining Big-Oh 

• What does that mean? 

• It means that for any number of 
inputs, f(n) (the running time of 
our actual function for some n 
number of inputs) will be less 
than some constant multiplied 
by n. 

• So f(n) will approach g(n), but 
never pass it, meaning g(n) 
bounds f(n), or f(n) 
asymptotically approaches g(n). 

Image credit: https://www.desmos.com/calculator  
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Big-Omega and Big-Theta 

• If Big-Oh is “less-than or equal-to”, Big-Omega 
is “greater-than or equal-to” – the lower 
bound, or best possible time performance. 

• There’s also Big-Theta, which is the function 
that maps to the exact growth rate of our 
function (at least for some stretch of inputs), 
and will be between the two other bounds. 

• Sometimes all three are the same function! 



Asymptotic Analysis 

• When deciding between two algorithms to solve 
a problem, the one with the lower O(x) will be 
asymptotically better. 

• For low input values, or for non-worst-case inputs 
(say, a series of numbers that happens to be 
sorted or nearly-sorted), an asymptotically worse 
function could perform better. 

• As the number of inputs increases, the 
asymptotically superior function will always 
outperform the competition. 



Let’s Use Big-Oh! 

Algorithm prefixAverages1(X): 
 Input: An n-element array X 
  of numbers. 
 Output: An n-element array A 
  of numbers such that 
  A[i] is the average of 
  elements X*0+,…,X*i+. 
 Let A be an array of n numbers. 
 for i <- 0 to n-1 do 
  a <- 0 
  for j <- 0 to i do 
   a <- a + X[j] 
  A[i] <- a/(i+1) 
 return array A 
 

• Initializing and returning A 
takes a constant number of 
primitive operations per 
element, so O(n). 

• Two nested for loops 
controlled by counters, both 
of which are linearly 
dependent on n (that is, as n 
goes up, both counters go up 
proportionately), making 
them take n * n, or O(n2) 



Let’s Use Big-Oh! 

Algorithm prefixAverages2(X): 
 Input: An n-element  
  array X of numbers. 
 Output: An n-element 
  array A of numbers 
  such that A[i] is the 
  average of  
  elements  
  X*0+,…,X*i+. 
 Let A be an array of n
  numbers. 
 for i <- 0 to n-1 do 
  s <- s + X[i] 
  A[i] <- s/(i+1) 
 return array A 
 

• Initializing and returning 
an array takes O(n) again. 

• Initializing the variable s 
takes O(1). 

• There’s just one for loop, 
whose counter is 
controlled by n. Thus 
O(n). 

• Since O(n) < O(n2), 
prefixAverages2 is 
asymptotically better. 



Understanding the Comparison 

• As the number of inputs (n) goes up, the fastest-
growing part of each method’s run-time function 
will come to dominate the other parts. 

• Even if prefixAverage2’s full runtime ended up 
being 100 + n, while prefixAverage1’s was just 5 + 
n2, once n > 10, prefixAverage2 would quickly 
overtake the competition. 

• That’s why the overall O(x) for an algorithm is the 
highest of the seven mathematical functions we 
reviewed, rather than including all the primitive 
operations and lesser terms. 



Tips for Analyzing Algorithms 

• Credit to Tom Shermer for these rules of 
thumb. 

• When analyzing an algorithm’s run-time, start 
by determining what n will be – what is the 
input whose growth controls the run time of 
the function? 

• If there’s an array or list involved, it’s probably 
their size. 



Calls 

• Simple assignment calls, like x = 6, are 
constant. 

• Calls to functions, like x = array.length, take as 
long as that function call takes. 

– X = array.length would take O(1) 

– X = max(array, array.length) would take O(n) 



Recursion, Conditionals, Loops 

• Recursive functions take the time of the rest 
of the function, multiplied by some value n, 
depending on how the recursion is defined. 

• For conditionals (if/else), assume the worst 
condition triggers (in terms of time), and 
don’t forget to measure the time the 
comparison takes! 

• Loops multiply their body by the number of 
times their conditional will run. 



Work Inside-Out 

• Look for the inner-most loops (check the 
indentation) and start counting primitive 
operations. 

• As you move to the outer loops, remember 
that they’ll do everything in the inner loop for 
every term of the loop. 

• A lot of loops end up adding n to the runtime, 
if they run for all inputs, unless they run in a 
smart way to only have to run log n. 



Recap – Analyzing the Lecture 
• Good programming means writing optimal (typically, 

time-efficient) code. 
• We measure time by analyzing algorithm pseudocode, 

counting primitive operations, and matching a growth 
function to the worst case scenario. 

• This function is described by Big-Oh notation, along 
with Big-Omega for best-case and Big-Theta for the 
actual growth rate. 

• By comparing Big-Oh measurements for different 
algorithms, we can determine which one is 
asymptotically better, which is our normal standard 
for the optimal approach. 

• Going forward, you can start analyzing the algorithms 
we discuss to make smart decisions about which ones 
to use! 


