CMPT 225: Data Structures \&
Programming - Unit 06 - Recursion

Dr. Jack Thomas

Simon Fraser University Spring 2021

Today's Topics

- What is Recursion?
- Linear Recursion
- Recursion Tracing
- Binary \& Multiple Recursion

What if a Function Calls Itself?

- Functions can call themselves, which causes the current instance to pause until the new instance finishes running.
- If you're not careful, this could cause an infinite loop.
- With a little planning, this can be an efficient and effective programming tool.
- In algorithmic terms, this is called Recursion.

Recursion

- Recursion is on the algorithmic/programming side of this course's content.
- Along with more explicit loops like for and while, it's a tool for repetition.

```
class ArraySizeCounterClass {
    public static int ArraySizeCounter(String[] a)
    {
        if (a.length == 1)
        {
        return 1;
    }
    else
    {
        String[] b = java.util.Arrays.copy0f(a, newLength: a.length - 1);
        int counter = ArraySizeCounter(b) + 1;
        return counter;
String[] countThese = {"Count", "these", "four", "Strings."};
    }
    }
    int result = ArraySizeCounterClass.ArraySizeCounter(countThese);
    System.out.println("Array count: " + result);

\section*{More Useful Recursive Example: The Fibonacci Sequence}
- \(0,1,1,2,3,5,8\)...
- \(F[i]=F[i-1]+F[i-2]\)
- Each value in the Fibonacci sequence is the sum of the two previous values.
- If I asked you what the \(23^{\text {rd }}\) Fibonacci value... wait


\section*{Hold Up, Peep That Chill Dude}


Image credit: https://en.wikipedia.org/wiki/Fibonacci\#/media/File:Leonardo da Pisa.jpg

\section*{Okay, Back On Topic}
- If I asked you what the \(23^{\text {rd }}\) Fibonacci Sequence value is, you'd need to find the \(22^{\text {nd }}\) and \(21^{\text {st }}\). The \(22^{\text {nd }}\) would require the \(21^{\text {st }}\) and \(20^{\text {th }}\), while the \(21^{\text {st }}\) would require the \(20^{\text {th }}\) and \(19^{\text {th }} \ldots\)
- Each of these steps is a repetition of the question "What is the Fibonacci Sequence value for \(x\) ?".
- We could structure our solution to take advantage of this pattern.

\section*{Anatomy of a Recursive Function}
- Each run of a recursive function goes one of two ways:
- A Recursive Call: The condition where the function will call itself. Typically has to change something between calls, like maybe calling itself on a subset (Ex: Asking for the values of the two previous Fibonacci Sequence terms, instead of asking for itself again).
- The Base Case: The condition where a recursive function does not call itself again, typically when it starts working its way back up to the solution (Ex: The first two Fibonacci Sequence values are known to be 0 and 1).

\section*{Linear Recursion}
- The simplest form - a method only makes one recursive call each time it's called, down to the base case.


\section*{Linear Example: Summing an Array}
- Say we wanted to add up an array A of \(n\) integers recursively:
Algorithm LinearSum(A,n):
Input: An integer array \(A\) and an integer
\(\mathrm{n}>=1\) such that A has at least n elements
Output: The sum of the first n integers in A if \(\mathrm{n}=1\) then return \(\mathrm{A}[0]\)
else
return LinearSum \((A, n-1)+A[n-1]\)

\section*{Recursion Tracing}
- How we visualize what a recursive function will actually do across its multiple instances.
- Draw a box for each instance, label it with the parameters of the method.
- Then draw an arrow from each calling method to their called method.
- Once you reach the base case, start tracing the results back "up" to the first call.

\section*{Recursion Trace for LinearSum}
- Let's give LinearSum( \(\mathrm{A}, \mathrm{n}\) ) an array A of \(\{4,3,6,2,5\}\) and \(n\) of 5 .


\section*{Binary Recursion: Call Twice}
- Exactly what it sounds like - where Linear had one recursive call, Binary has two.

Algorithm BinarySum ( \(\mathrm{A}, \mathrm{i}, \mathrm{n}\) ):
Input: an array \(A\) and integers \(i\) and \(n\)
Output: the sum of the \(n\) integers in A starting at index I
if \(n=1\) then return \(\mathrm{A}[\mathrm{i}]\)
return \(\operatorname{BinarSum}(A, I,(n / 2))+\operatorname{BinarySum}(A, i+(n / 2),(n / 2))\)

\section*{Tracing BinarySum}
- Say we gave BinarySum(a, i, n) an eight-number array \(a\), with \(i=0\) (start summing from the first index) and \(\mathrm{n}=8\) (the length of the array).


\section*{"Aha," you say. "So this is how we do the Fibonacci Sequence!"}
- Surprisingly, no.
- It's not hard to imagine a binary recursive algorithm that can do it - basically just "BinaryFib(n-1) + BinaryFib(n2)" with a base case where if \(n<=1\), return \(n\).
- The problem is, this leads to an exponential number of function calls - every Fibonacci Sequence value gets calculated multiple times over the run of the program.

\section*{Linear Fibonacci}
- Let's tweak our approach to calculate both the value we want and the value before it at the same time.
Algorithm LinearFibonacci(k):
Input: A nonnegative integer k
Output: Pair of Fibonacci values (Fk, Fk-1)
if \(k\) <= 1 then return (k,0)
else
\[
\begin{aligned}
& (\mathrm{i}, \mathrm{j})<- \text { LinearFibonacci }(\mathrm{k}-1) \\
& \text { return }(\mathrm{i}+\mathrm{j}, \mathrm{i})
\end{aligned}
\]

\title{
By The Way Someone Painted The \\ Face Of That Fibonacci Statue From
} Earlier And Yeeesh

- Kinda looks like Mark Zuckerberg?
- Maybe it's the hoodie...

Image credit: https://www.sciencesource.com/archive/ Leonardo-Fibonacci--Italian-Mathematician-SS2192062.html

\section*{How About More Than Twice?}
- Multiple Recursion can be generalized from Binary Recursion pretty directly.
- Useful for solving complicated combination or permutation puzzles, where you want to test many configurations.
- We should probably make sure we can walk before we try running, though - no need to start trying this one out just yet.

\section*{Tips for Designing Recursive Functions}
- Think of ways you can subdivide your problem into smaller problems with the same general structure - halving an array, for example.
- You may need to redefine the question you're asking to achieve this, like asking for two different Fibonacci values instead of just the one you want.
- It might help to work up from the base cases - if the problem is easily solved when \(\mathrm{n}=0\) or 1 (for whatever that means in your problem), try starting with them!

\section*{Recursion, Loops, Arrays, Lists...}
- It's starting to look like we have a number of different options for data structures and algorithms to design our systems with.
- Some of these have different properties that can make them more or less efficient, like recursion leading to exponential function calls or lists being slow to traverse.
- How can we analyze these differences to make good design decisions? Tune in next week...

\section*{Recap - Now Go Read These Slides in Reverse}
- Recursion is a technique for repetition whereby a function calls itself.
- Recursive functions typically include conditions that trigger a recursive call and conditions that begin the process of resolving the function, called the base case(s).
- Recursion Tracing lets us visualize what's going on in a recursive function.
- In Linear recursion, each instance of the recursive function will only call itself one time, while Binary recursion calls itself twice, and Multiple recursion can call itself many times.```

