
CMPT 225: Data Structures &
Programming – Unit 06 – Recursion

Dr. Jack Thomas

Simon Fraser University

Spring 2021

Today’s Topics

• What is Recursion?

• Linear Recursion

• Recursion Tracing

• Binary & Multiple Recursion

What if a Function Calls Itself?

• Functions can call themselves, which causes the
current instance to pause until the new instance
finishes running.

• If you’re not careful, this could cause an infinite
loop.

• With a little planning, this can be an efficient and
effective programming tool.

• In algorithmic terms, this is called Recursion.

Recursion

• Recursion is on the algorithmic/programming side of
this course’s content.

• Along with more explicit loops like for and while, it’s a
tool for repetition.

More Useful Recursive Example:
The Fibonacci Sequence

• 0, 1, 1, 2, 3, 5, 8…

• F[i] = F[i-1] + F[i-2]

• Each value in the
Fibonacci sequence
is the sum of the
two previous values.

• If I asked you what
the 23rd Fibonacci
value… wait

Image credit: https://en.wikipedia.org/wiki/Fibonacci#/media/File:Leonardo_da_Pisa.jpg

https://en.wikipedia.org/wiki/Fibonacci
https://en.wikipedia.org/wiki/Fibonacci

Hold Up, Peep That Chill Dude

• Is he wearing a
skull mask?

• Sick

Image credit: https://en.wikipedia.org/wiki/Fibonacci#/media/File:Leonardo_da_Pisa.jpg

https://en.wikipedia.org/wiki/Fibonacci
https://en.wikipedia.org/wiki/Fibonacci

Okay, Back On Topic

• If I asked you what the 23rd Fibonacci Sequence
value is, you’d need to find the 22nd and 21st. The
22nd would require the 21st and 20th, while the
21st would require the 20th and 19th…

• Each of these steps is a repetition of the question
“What is the Fibonacci Sequence value for x?”.

• We could structure our solution to take
advantage of this pattern.

Anatomy of a Recursive Function

• Each run of a recursive function goes one of two
ways:
– A Recursive Call: The condition where the function

will call itself. Typically has to change something
between calls, like maybe calling itself on a subset (Ex:
Asking for the values of the two previous Fibonacci
Sequence terms, instead of asking for itself again).

– The Base Case: The condition where a recursive
function does not call itself again, typically when it
starts working its way back up to the solution (Ex: The
first two Fibonacci Sequence values are known to be 0
and 1).

Linear Recursion

• The simplest form – a method only makes one
recursive call each time it’s called, down to the
base case.

Linear Example: Summing an Array

• Say we wanted to add up an array A of n
integers recursively:

Algorithm LinearSum(A,n):

 Input: An integer array A and an integer

 n >= 1 such that A has at least n elements

 Output: The sum of the first n integers in A

 if n = 1 then

 return A[0]

 else

 return LinearSum(A, n – 1) + A[n-1]

Recursion Tracing

• How we visualize what a recursive function
will actually do across its multiple instances.

• Draw a box for each instance, label it with the
parameters of the method.

• Then draw an arrow from each calling method
to their called method.

• Once you reach the base case, start tracing
the results back “up” to the first call.

Recursion Trace for LinearSum

• Let’s give LinearSum(A,n) an array A of
{4,3,6,2,5} and n of 5.

Binary Recursion: Call Twice

• Exactly what it sounds like – where Linear had
one recursive call, Binary has two.

Algorithm BinarySum (A, i, n):
 Input: an array A and integers i and n
 Output: the sum of the n integers in A starting at index I
 if n = 1 then
 return A[i]
 return BinarSum(A,I,(n/2)) + BinarySum(A,i+(n/2),(n/2))

Tracing BinarySum

• Say we gave BinarySum(a, i, n) an eight-number
array a, with i = 0 (start summing from the first
index) and n = 8 (the length of the array).

“Aha,” you say. “So this is how we do
the Fibonacci Sequence!”

• Surprisingly, no.

• It’s not hard to imagine a binary recursive algorithm that
can do it – basically just “BinaryFib(n-1) + BinaryFib(n-
2)” with a base case where if n <= 1, return n.

• The problem is, this leads to an
exponential number of function
calls – every Fibonacci Sequence
value gets calculated multiple times
over the run of the program.

Linear Fibonacci

• Let’s tweak our approach to calculate both the
value we want and the value before it at the
same time.

Algorithm LinearFibonacci(k):
 Input: A nonnegative integer k
 Output: Pair of Fibonacci values (Fk, Fk-1)
 if k <= 1 then
 return (k,0)
 else
 (i, j) <- LinearFibonacci(k - 1)
 return (i+j, i)

Image credit: https://www.sciencesource.com/archive/
Leonardo-Fibonacci--Italian-Mathematician-SS2192062.html

https://www.sciencesource.com/archive/Leonardo-Fibonacci--Italian-Mathematician-SS2192062.html
https://www.sciencesource.com/archive/Leonardo-Fibonacci--Italian-Mathematician-SS2192062.html
https://www.sciencesource.com/archive/Leonardo-Fibonacci--Italian-Mathematician-SS2192062.html
https://www.sciencesource.com/archive/Leonardo-Fibonacci--Italian-Mathematician-SS2192062.html
https://www.sciencesource.com/archive/Leonardo-Fibonacci--Italian-Mathematician-SS2192062.html
https://www.sciencesource.com/archive/Leonardo-Fibonacci--Italian-Mathematician-SS2192062.html
https://www.sciencesource.com/archive/Leonardo-Fibonacci--Italian-Mathematician-SS2192062.html
https://www.sciencesource.com/archive/Leonardo-Fibonacci--Italian-Mathematician-SS2192062.html
https://www.sciencesource.com/archive/Leonardo-Fibonacci--Italian-Mathematician-SS2192062.html
https://www.sciencesource.com/archive/Leonardo-Fibonacci--Italian-Mathematician-SS2192062.html
https://www.sciencesource.com/archive/Leonardo-Fibonacci--Italian-Mathematician-SS2192062.html
https://www.sciencesource.com/archive/Leonardo-Fibonacci--Italian-Mathematician-SS2192062.html
https://www.sciencesource.com/archive/Leonardo-Fibonacci--Italian-Mathematician-SS2192062.html

By The Way Someone Painted The
Face Of That Fibonacci Statue From

Earlier And Yeeesh

• Kinda looks like Mark Zuckerberg?
– Maybe it’s the hoodie…

Image credit: https://www.sciencesource.com/archive/
Leonardo-Fibonacci--Italian-Mathematician-SS2192062.html

https://www.sciencesource.com/archive/Leonardo-Fibonacci--Italian-Mathematician-SS2192062.html
https://www.sciencesource.com/archive/Leonardo-Fibonacci--Italian-Mathematician-SS2192062.html
https://www.sciencesource.com/archive/Leonardo-Fibonacci--Italian-Mathematician-SS2192062.html
https://www.sciencesource.com/archive/Leonardo-Fibonacci--Italian-Mathematician-SS2192062.html
https://www.sciencesource.com/archive/Leonardo-Fibonacci--Italian-Mathematician-SS2192062.html
https://www.sciencesource.com/archive/Leonardo-Fibonacci--Italian-Mathematician-SS2192062.html
https://www.sciencesource.com/archive/Leonardo-Fibonacci--Italian-Mathematician-SS2192062.html
https://www.sciencesource.com/archive/Leonardo-Fibonacci--Italian-Mathematician-SS2192062.html
https://www.sciencesource.com/archive/Leonardo-Fibonacci--Italian-Mathematician-SS2192062.html
https://www.sciencesource.com/archive/Leonardo-Fibonacci--Italian-Mathematician-SS2192062.html
https://www.sciencesource.com/archive/Leonardo-Fibonacci--Italian-Mathematician-SS2192062.html
https://www.sciencesource.com/archive/Leonardo-Fibonacci--Italian-Mathematician-SS2192062.html
https://www.sciencesource.com/archive/Leonardo-Fibonacci--Italian-Mathematician-SS2192062.html

How About More Than Twice?

• Multiple Recursion can be generalized from
Binary Recursion pretty directly.

• Useful for solving complicated combination or
permutation puzzles, where you want to test
many configurations.

• We should probably make sure we can walk
before we try running, though – no need to
start trying this one out just yet.

Tips for Designing Recursive Functions

• Think of ways you can subdivide your problem
into smaller problems with the same general
structure – halving an array, for example.

• You may need to redefine the question you’re
asking to achieve this, like asking for two different
Fibonacci values instead of just the one you want.

• It might help to work up from the base cases – if
the problem is easily solved when n = 0 or 1 (for
whatever that means in your problem), try
starting with them!

Recursion, Loops, Arrays, Lists…

• It’s starting to look like we have a number of
different options for data structures and
algorithms to design our systems with.

• Some of these have different properties that
can make them more or less efficient, like
recursion leading to exponential function calls
or lists being slow to traverse.

• How can we analyze these differences to make
good design decisions? Tune in next week…

Recap – Now Go Read These Slides in Reverse

• Recursion is a technique for repetition whereby a
function calls itself.

• Recursive functions typically include conditions that
trigger a recursive call and conditions that begin the
process of resolving the function, called the base
case(s).

• Recursion Tracing lets us visualize what’s going on in a
recursive function.

• In Linear recursion, each instance of the recursive
function will only call itself one time, while Binary
recursion calls itself twice, and Multiple recursion can
call itself many times.

