
CMPT 225: Data Structures &
Programming – Unit 05 – Lists

Dr. Jack Thomas

Simon Fraser University

Spring 2021

Today’s Topics

• The List ADT

• Lists in Java

• Singly Linked Lists

• Doubly Linked Lists

• Circular Lists

Lists: What’s The Big Idea?

• An alternative data structure to an array, a list
organizes data into a series of node objects,
each of which includes one data element and
a link to one or more other nodes.

• Instead of blocking out a contiguous chunk of
memory, you allocate memory dynamically as
needed, linking to the next node.

Comparing Arrays and Lists

• Advantages:

– Don’t need a fixed size.

– Adding or removing from the middle doesn’t
involve moving every other element around.

• Disadvantages:

– Harder to access middle elements without an
index.

– No built-in tracking for the length, or where you
are in the list.

Anatomy of a List

• There’s a common set of terminology for lists:
– A node is one entry in the list, an object.
– The head is the node at the top of the list, and is typically

kept by whatever object needed a list. There’s nothing
special built-in to being the head, it’s just whatever node
you start reading the list from.

– The element is the actual piece of data stored within the
node, like one element of an array.

– One or more links, that is, a reference that will take you to
the next node in the list (or the previous one, in doubly-
linked)

– The tail refers to the last node in the list, indicated by a
null link.

Don’t Lists Already Exist?

• Yes, Java already has a List interface, and a
number of useful classes that implement it
(including a LinkedList and, ironically,
ArrayList).

• Our focus today remains on the List concept,
as well as learning how these list
implementations work on the inside.

• Good to acknowledge you’ll probably mostly
use pre-defined lists, though.

The Singly Linked List

• The simplest form of list gives each node one
link to the next node.

• Your list keeps track of the head, and possibly
the tail, and traverses down the list from link
to link (called link hopping) whenever it needs
to access an element.

Implementing a Singly Linked List

• Will require two different classes, one for the
List, and one for the Nodes.

• The List keeps track of the head, and should
probably also track the size of the list. It will also
include methods for adding to, removing from,
and searching the list tailored to your program’s
needs.

• Nodes simply need to store their element and a
link to the next Node, along with methods for
accessing and setting these variables.

Inserting

• Adding to our list is as simple as creating a new node
and then setting one of the links in our list to point to
it, but where we insert it matters a lot.

• Adding to the top of the list is very easy – simply set
your new node’s “next” link to point to the current
head, then point your list’s “head” link at the new
node.

• Adding to the end isn’t hard either, so long as you kept
a reference to the tail. Just have your new node’s link
point to a null, have your current tail point to the new
node, and have your list’s “tail” link point to the new
node as well.

Insertion Algorithms

Algorithm addFirst(v):

 v.setNext(head)

 head <- v

 size <- size + 1

Algorithm addLast(v):
 v.setNext(null)
 tail.setNext(v)
 tail <- v
 size <- size + 1

• Note how we need to remember to manage our
list’s size.

• Without a tail link, we’d have to include a step to
addLast(v) where we cycle through the whole list
from the head.

Removing

• Removing a head from a list is also fairly
simple – just point the list’s head link to the
current head’s next link.

Algorithm removeFirst():
 if head = null then
 Indicate an error: the list is empty.
 t <- head
 head <- head.getNext()
 t.setNext(null)
 size <- size - 1

Doubly Linked Lists

• Removing a tail from a singly-linked list isn’t
easy, since you’d need to know the node in
the list one stop before the tail.

• One solution is to doubly-link each node, so
that now they have a link to the next node
and the previous node in the list.

• The List class will require
extensive reworking to take
advantage of this relatively
small change.

Sentinel Nodes

• The head and tail of a doubly-linked list are a little
different than the other nodes – the head has a
null previous, and the tail has a null next.

• By using dummy sentinel nodes with no element
inside as the head and tail, we can make some
simplifying assumptions in our other functions.

• These dummies are called the header and trailer,
to distinguish them from heads and tails with
actual content.

Insertion, or “Linking In”

• The sentinel nodes let us change how we think
of adding and removing, since now every
regular node has a non-null next and previous.

• Instead of adding to the head or tail, we can
imagine adding before a node or after a node.

• This process is called “linking in”, as it’s
achieved by connecting the neighbour nodes’
links to the new node.

The “Add After” Algorithm

Algorithm addAfter(v,z):

 w <- v.getNext()

 z.setPrev(v)

 z.setNext(w)

 w.setPrev(z)

 v.setNext(z)

 size <- size+1

• There’s also “Add
Before”, which should
follow pretty intuitively
from this.

Removal, or “Linking Out”

• The natural inverse of linking in is linking out,
when you remove a node by linking its
previous and next nodes to each other.

• Don’t forget to clear the removed node’s next
and previous links, in case it still exists out
there somewhere and could cause structural
confusion!

The “Remove” Algorithm

Algorithm remove(v):

 u <- v.getPrev()

 w <- v.getNext()

 w.setPrev(u)

 u.setNext(w)

 v.setPrev(null)

 v.setNext(null)

 size <- size - 1

• No two versions this time.

Implementing a Doubly Linked List

Implementing a Doubly Linked List

Implementing a Doubly Linked List

Ouroboros: The Circular List

• Exactly what it sounds – link the tail and the
head.

• The list now keeps track of a cursor, which is,
where along the circle we’re currently sitting.

• Sort of like a game of “duck, duck, goose”.

• Maybe we’ll save the full implications of this
one for another day!

Recap – The Slideshow Tail

• Lists are an alternative data structure to arrays,
that stores each element separately with links to
the next (and sometimes previous) element(s).

• Singly-linked lists only link to the next, which can
make it tricky to access the middle or end of the
list.

• Doubly-linked lists are easier to traverse, and can
add things link sentinel nodes to simplify their
methods.

• Also sometimes lists go in circles and that’s cool.

[SLIDESHOW TRAILER: DO NOT SHOW]

