
CMPT 225: Data Structures & Programming 
– Unit 03 –  

Object Oriented Design, Part Two 

Dr. Jack Thomas 

Simon Fraser University 

Spring 2021 



Today’s Topics 

• Abstract Data Types  

• Abstract Classes 

• Interfaces  

• Throwables 

• Casting 



Addendum to Last Lecture 

• If a subclass is instanced as its superclass (i.e. a 
CowboyGreeting object created as a Greeting), 
you can’t access the overloaded versions of its 
functions, but the overridden ones will still be 
overridden (i.e. printing “howdy partner!”). 

• A function’s signature is its name and the 
parameters it accepts, not the return type. 

• Possibility for future lectures: saving some 
technical questions until the end to be answered 
next time to preserve the lecture’s flow? 



Abstract Data Types 

• As mentioned, an Abstract Data Type (ADT) is the 
idea behind a data structure, like a stack or a 
queue, rather than the structure itself. 

• A Concrete Data Type, therefore, is the actual 
implementation of the ADT, well-defined in the 
actual code.  
– It’s rare we actually need to use this term. 

• ADTs collectively represent the objects that make 
up object-oriented programming, leaving it to 
individual languages and programmers to 
implement them. 



What ADTs Provide 

• ADTs typically define the types of data they store 
and the operations they allow – what they are, 
but not how they work. 

• Common methods include: 
– Mutators: How the data inside the object can be 

manipulated (“setters”). 
– Accessors: What data the object makes available to 

others (“getters”). 
– Constructors: Different ways to build the object. 

• These represent the object’s Application Program 
Interface (API), or interface. 



Using Abstraction in Java 

• It’s possible to declare a class to be Abstract, 
meaning it can only be inherited from, not 
instanced on its own. 

• This allows Abstract functions to be declared 
with only a signature, that all extending 
subclasses will have to fill in on their own. 

• It otherwise works as a normal class (it can 
have variables and other, completed 
functions, or not). 



Image Credit: https://www.amazon.com/Faux-Felt-Wide-Western-
Cowboy/dp/B00LWZMO88  

https://www.amazon.com/Faux-Felt-Wide-Western-Cowboy/dp/B00LWZMO88
https://www.amazon.com/Faux-Felt-Wide-Western-Cowboy/dp/B00LWZMO88
https://www.amazon.com/Faux-Felt-Wide-Western-Cowboy/dp/B00LWZMO88
https://www.amazon.com/Faux-Felt-Wide-Western-Cowboy/dp/B00LWZMO88
https://www.amazon.com/Faux-Felt-Wide-Western-Cowboy/dp/B00LWZMO88
https://www.amazon.com/Faux-Felt-Wide-Western-Cowboy/dp/B00LWZMO88
https://www.amazon.com/Faux-Felt-Wide-Western-Cowboy/dp/B00LWZMO88
https://www.amazon.com/Faux-Felt-Wide-Western-Cowboy/dp/B00LWZMO88
https://www.amazon.com/Faux-Felt-Wide-Western-Cowboy/dp/B00LWZMO88
https://www.amazon.com/Faux-Felt-Wide-Western-Cowboy/dp/B00LWZMO88


Java Interfaces 

• Interfaces (the Java code term, not the 
abstract concept) are made up entirely of 
Abstract function signatures, with no variables 
or completed functions. 

• Classes that implement an interface must 
then fill in these functions. 

• Unlike other forms of inheritance in Java, 
classes can implement multiple interfaces. 

 





Brief Aside: Object Orientation  
in Java vs. in Other Languages 

• We are mixing some of the general ideas of 
the object-oriented paradigm with the specific 
implementation decisions of Java. 

• Different languages have found other ways to 
implement some of these principles. 

• For example, in C++, classes can inherit from 
multiple other classes – functions simply 
include from what class they derive as part of 
their signature. 



Errors, Exceptions, and Throwing 

• In Java, there are two broad categories of 
problem – Errors, where the code will break, or 
Exceptions, when we want the code to stop for 
our own reasons.  

• Both are objects, subclasses of Throwable, 
because when their conditions are met the 
program will Throw one of them. 

• Programmers can define their own conditions for 
when the code should Throw to prevent 
undesirable or code-breaking outcomes. 





Try and Catch 

• Once a Throwable object is created, we need 
to use it to handle the problem. 

• When we expect an error or exception might 
occur, we can enclose that piece of code in a 
Try block, and then follow it with a Catch 
block that triggers if something is thrown. 

• Think of it as an If/Else block, where the 
condition is met if a Throwable of the correct 
type is created. 

 



(Yes, you can have multiple catch blocks for different Throwables) 



Casting 

• A lot of the techniques that object-oriented 
programming allow take advantage of how 
inheritance means a class can belong to 
multiple other classes. 

• Casting allows us to change how an object is 
seen. 



Widening and Narrowing Conversions 

• If an object is recast as something further up its 
inheritance chain (i.e. Integer to Number, or 
CowboyGreeting to Greeting), this is a Widening 
Conversion.  

• Some data can be lost this way (say, if the wider type 
doesn’t have some variables that the original narrower 
object had) but it should not cause errors, as the 
narrower object was also a valid instance of the wider 
object. 

• The reverse case is a Narrowing Conversion, but 
carries more risk – the compiler doesn’t know, for 
example, if the original object is missing some variables 
that the new narrower case requires, which can lead to 
run-time errors. 



Recap – End Of Slideshow Exception 

• Abstract Data Types are the general ideas behind data 
structures in object-oriented programming. 

• Abstract Classes can only be extended, not instanced. 
• Classes can implement multiple Interfaces, but all of 

their functions are just empty signatures.  
• Throwables are a type of object for containing and 

handling errors and exceptions that must be caught. 
• Casting can change what we see an object as, changing 

the options available to us. 
• All of these tools will help us to implement and use the 

various data structures and algorithms the rest of the 
course will cover! 


