
CMPT 225: Data Structures & Programming
– Unit 02 –

Object Oriented Design, Part One

Dr. Jack Thomas

Simon Fraser University

Spring 2021

Today’s Topics

• Definition of Object-Oriented Design

• The Four Principles

• Inheritance

• Polymorphism

• Design Patterns

What Does It Mean To Be
“Object Oriented”?

• A paradigm for organizing code into discrete
“objects”, each complete and self-contained.

• Adopted by many of the most popular
programming languages, including Java, C++,
and Python.

• Provides a useful framework for
understanding data structures and algorithms
that is transferrable between different
languages.

The Four Principles

1. Abstraction: Summarizing complicated
systems into their overall concept.

2. Encapsulation: Containing whatever you
need to fulfill that concept within the object.

3. Modularity: Making each of these objects
distinct and reusable.

4. Hierarchy: Organize your objects into a
hierarchy of is-a relationships.

1. Abstraction

• The process of organizing code around a clearly
defined purpose it’s meant to fulfill.

• Applying abstraction to data structures gives us
Abstract Data Types (ADT), meaning the abstract
idea of a data structure like a stack or queue
rather than the specific implementation.

• The point is to make programming easier for
humans to understand and talk about with each
other.

A Word On
Objects, Classes, and Instances

• Abstraction makes it necessary to distinguish
between different instances of the same class
of object.

• For comparison, every individual dog in the
world is an instance of a “dog”, the concept.

• An array of ten Strings is also a set of ten
objects, instances of the String class.

• Understanding how individual instances are
unique but also alike is the key to
understanding object-oriented programming.

2. Encapsulation

• An object should contain everything it needs
to complete its purpose, and nothing more.

• It should also only take in what it needs, and
only put out what it’s supposed to, hiding its
inner workings.

• The programmer is free to implement this
code however they want, so long as the
object behaves as expected.

How does a car work?

• Answer: You don’t need to know, so long as
the pedals and steering wheel do what they’re
supposed to.

3. Modularity

• Along with giving each object a clear purpose
and making them self-contained, they should
also be distinct from one another.

• Each object should only be concerned with
doing its own job, while the programmer
focuses on arranging them in the right order.

• This makes it easier to reuse code to solve
similar problems - objects should behave the
same if dropped into a new environment.

4. Hierarchy

• Objects are typically organized into a hierarchy
of is-a relationships according to their type
(e.g. Chihuahua is a Dog).

• More specific objects descend from more
general ones, but belong to both (e.g. a
Chihuahua named Fido is both a Chihuahua
and a dog).

Object-Orientation in Java

• In Java, code objects are grouped together
according to their class, with general
superclasses (or base classes) at the top and
specialized subclasses extending from them.

• The standard library contains many modular
packages for you to use, including interfaces
that act as Abstract Data Types.

• Good Java programming follows these
examples.

Inheritance

• When objects are organized in a hierarchy, the
more specific objects are said to inherit from
their more general predecessors, gaining their
fields and methods.

• When done well, a programmer should only
need to write code for the newest and most
specific parts of their new classes that inherit
from the existing general cases, cutting down
on redundancy.

Inheritance in Java

• Subclasses inherit the variables (fields) and
functions (methods) of their superclasses.

• Note that classes can only inherit from
(extend) one other class, but that multiple
classes can inherit from that class.

• A subclass inherits everything from their
superclass’s superclasses as well, creating a
chain of inheritance.

Polymorphism

• Literally “many forms”.

• Hierarchy and inheritance creates situations
where different objects can fulfill the same
purpose – if you need a dog, both a
Chihuahua and a Daschund would work.

Polymorphism in Java

• Overriding is when a subclass implements its
own version of a function belonging to its
superclass. Java defaults to the version of a
function defined by the lowest subclass.

• Overloading is when a class has more than
one version of the same function,
distinguishing between them with different
signatures (e.g. what variables they accept as
their argument).

The first line will print “Howdy, partner!” but the
second line will not compile, because the
program doesn’t know that cowboyPolymorphic
is a cowboyGreeting.

Design Patterns

• Best practices and common solutions to
problems in object-oriented programming can be
grouped together into a design pattern.

• Design patterns are like blueprints for a kind of
program, structure, algorithm, etc, that are
usually general and not tied to one language.

• Common features of a design pattern include a
name, a context where they’re used, a template
for implementing them, and a result that
describes their output and performance.

Some Design Patterns We May Cover

Algorithms

• Recursion

• Amortization

• Divide and Conquer

• Prune and Search

• Brute Force

• Greedy Method

• Dynamic Programming

Software

• Position

• Adapter

• Iterator

• Template method

• Composition

• Comparator

• Decorator

Recap – The Summary Pattern

• Object-oriented programming is a popular
programming paradigm that informs how programmers
approach code across multiple languages.

• It follows principles of abstraction, encapsulation,
modularity, and hierarchy to organize code.

• In Java, subclasses inherit methods and fields from
their superclasses, and can replace them through
overriding or make alternatives through overloading.

• Design patterns are blueprints for making certain
common software elements according to best
practices.

