
Lab 3: Double Or Nothing

Pre-Lab Notes

Lab submissions will not be accepted late – they must be submitted by midnight the day after
they're assigned (to account for time zone issues). Some latitude might be allowed (I won't disqualify 
a submission that's mere minutes late!) but that's purely discretionary.

Labs are treated differently from assignments – you're encouraged to work with fellow students,
ask questions of the TA during your lab section, and generally collaborate to complete your work. You 
should still submit your own work, including citing with whom you collaborated in your 
submission, but using answers developed by others will not be treated as plagiarism.

Nevertheless, you are still encouraged to make a good faith effort to complete your labwork, in 
order to exercise your understanding of the topics it covers. Lab submissions are marked purely 1 or 0 
by whether the TA believes you at least made an honest attempt, even if you didn't succeed, so the 
value is in what the attempt teaches you rather than simply having the right answer. 

1. The Array List and the Node List

We recently covered the Array List in lecture, discussing how it is the full data structure version 
of the primitive array, complete with an ADT and concrete class implementations in languages like 
Java. In particular, we discussed the idea of a linear set of data elements, known as a sequence, and 
how arrays and lists are different ways to implement that idea.

However, we did not explore the other side of that coin – if Array List is the formal version of 
the arrays we studied earlier, what is the formal version of the primitive linked list? These are known as
Node Lists.

Today's lab will give you some practice with both the Array List and the Node List, by asking 
you to implement each of them. You won't simply be using the completely default version of either 
class, however, since these already exist in Java. Instead, each part of the lab will ask you to make a 
modification in your implementation, giving us a reason to get some practice in with each of these data 
structures and their inner workings.

This lab is also partly practice for assignment 2, both in terms of the content covered and also 
the format of the submission.

1.1 The Node List ADT

To give you a quick overview of the Node List data structure, then, a (capital L) List is defined 
as a linear sequence of data elements stored as positions, to contrast with an array's index. A position is
relative, meaning that each element is defined as being before or after some other element, like the 
head being at the start of the sequence and the tail being at the end. Despite the relative nature of 
positions, from moment to moment they can still be turned into a number if need be – we can talk about
adding something in the third position meaning that it belongs behind the first two positions, for 
example.

In a Node List, each position is filled with an object, known as a Node, which stores the data 
element belonging in that position as well as a reference (or references) to other positions and their 
nodes. The formal methods in a Node List's ADT include:

-First: Returns the node at the start of the sequence.



-Last: Returns the node at the end of the sequence.
-Prev: Returns the node previous to a given node.
-Next: Returns the node after a given node.
-Set: Replace the element stored in the node at a given position, returning the old element.
-addFirst: Insert a new node as the first node of the sequence.
-addLast: Insert a new node as the last node of the sequence.
-addBefore: Insert a new node into the sequence before a given position.
-addAfter: Insert a new node into the sequence after a given position.
-Remove: Removes the node at a given position from the sequence and returns it.

This isn't to say that a fully-featured Node List class might not want to implement other 
functions, of course, nor does it comment on how to implement them (which may vary on the needs of 
the programming language or the specific situation). For example, this ADT doesn't even clarify 
whether the list is singly-linked or doubly-linked – it doesn't define the node class at all. Any class 
claiming to be a concrete implementation of the Node List ADT, however, must at least cover the 
methods outlined above.

2. Outline

Below are two requests, one for a customized ArrayList class, and one for a customized 
NodeList class. In each case, you should write a separate file for the data structure being built, though 
they may share the same test class (likely a main class with a main function that prints text output to the
terminal).

2.1 Changing Arrangements

At the end of the lecture on Array Lists, we briefly discussed how the standard Java ArrayList 
class handles the array's need for a fixed size by doubling its current capacity whenever it is asked to 
add a new element beyond the current maximum. This might be a useful technique for other data 
structures to emulate, but why stop there? Why not also shrink the Array List whenever it drops to 
below half of the current maximum capacity?

For this part of the lab, write a version of the ArrayList class (from scratch, not inheriting or 
implementing ArrayList or any other class) whose add and remove functions will double or halve the 
stored array, if the number of stored elements exceeds the maximum or drops below half the maximum.
To simplify matters, we'll let this version of Array List simply store an array of integers (rather than any
sort of object). Our attention is also focused on the add and remove functions, so the other functions of 
the ADT can just be filled in as-needed to support those two and any testing you do.

Demonstrate your work in a test class with a main method that prints both the ArrayList's size 
(as in filled elements) as well as the size (as in capacity) of the actual array stored within it.

2.2 Adaptation

While we know from section 1.1 of this lab that code for a doubly-linked list of nodes is, in 
essence, an implementation of the Node List ADT, we also know from our unit on the Adapter design 
pattern that “essentially the same” isn't equal to “exactly the same” in the world of programming 
objects. If the class hierarchy for a software system being laid down by a developer calls for a NodeList
class, sending them a LinkedList class won't work.

For this second lab question, you're to implement your own NodeList class that fulfills the 



NodeList ADT by adapting a standard Java LinkedList class of doubly-linked nodes. Your custom 
NodeList class doesn't need to extend or implement any other Java class, for now – it only needs to 
make concrete the ADT of the Node List class as described in 1.1, by including a LinkedList of nodes. 
You'll also want to define your own node class to fill the LinkedList with, which for simplicity's sake 
we'll say will carry a simple String variable as a data element..

Once your NodeList class is complete, be sure to run it with a test class that will try each of its 
functions. Each of them should produce the desired effect, such as being able to add String words as 
new nodes, print the Strings from the stored nodes, remove certain nodes, etc.

3. Deliverables

All lab submissions will be done through CourSys at https://courses.cs.sfu.ca/. For this lab, that 
should include:

1. A .zip archive of your code, organized into a single Java project. To ensure compatibility, it's 
recommended to use IntelliJ while developing your code, then using the export function under File -> 
Export -> Project To .zip File. Don't forget to include a test file, a Main.java with a main method that 
prints the results of a few runs of your functions to the terminal would be best.

Be sure you tidy up your code before submitting! Check the Java code style guide posted on 
the course website, and do your best to provide helpful comments.

https://courses.cs.sfu.ca/

