

Topics

- What is cryptography?
- What are the basics of cryptographic algorithms?
 - What are cryptographic hashes?
 - What is a secret key encryption?
 - What is public-key encryption?

Cryptography: The absolute basics

Context

- Cryptography
 - A very broad area.
 - We'll focus on how to <u>use</u> cryptography.
 - We just touch on the basics!

The CIA Model

CIA model: the classic security model.

- Confidentiality:

. .

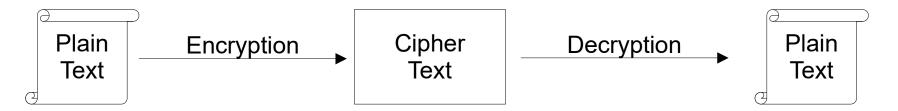
- Integrity:

. .

and only by authorized parties.

Availability:

. .


Threat examples

- Against confidentiality: classified information leak

Against integrity: fake images/videos

Against availability: Denial-of-Service (DoS) attacks

General Cryptography Process

- Cryptographers invented secret codes to hide messages from unauthorized observers.
- Challenges:
 - How can you hide a message from everyone but the intended recipient?
 - How can the recipient know the message is authentic?

ABCD: Traditional Cryptography

- Traditional Cryptography:
 - Secret codes, which are secret algorithms.
 - E.g., Caesar Cipher: ..

For +1 'A' becomes 'B'.

- ABCD: Which of the following is the cipher text from using a 3-letter shift Caesar Cipher on the plain text "Hello world"?
- a) EBIIL TLOIA
- b) KHOOR ZRUOG
- c) IFMMP XPSME
- d) LOWOR LDHEL
- What is the problem with a secret algorithm?
 - When your algorithm (or code book) is compromised,

. .

Modern Encryption

- Algorithms are Public
 - ..
 - May be symmetric (secret key) or asymmetric (public key).
- Why is this better?
 - If algorithm or code is secret,
 then if it falls into the wrong hands it means code is useless.
 - If only key is private,
 then if it falls into the wrong hands then

. .

Crypto Algorithm Goals

- Choose an encryption algorithm such that:
 - Given a key, it should be

. .

Without a key, it should be

. .

 Strength of security often based on length of key: Longer key is more difficult to guess (by brute-force).

Window of Validity

Window of Validity

. .

- Must only use algorithm that have not been compromised.
- Problem:

Window of validity of your crypto function

. .

- Design systems so you can replace the crypto function easily.
- Example Windows of Validity
 - 1993: SHA-0 was published.
 - 1995: Possible weakness was found in the SHA-0 algorithm; replaced with SHA-1.
 - 2004: Published way to compromise SHA-0
 - 2017: Published way to compromise SHA-1
 - ????: Published way to compromise SHA-256?

Three Types

• Types of cryptography algorithms based on their keys:

```
- Zero keys: ..
```

- One key: ..
- Two keys: ..

Cryptographic Hash Functions (Zero Keys)

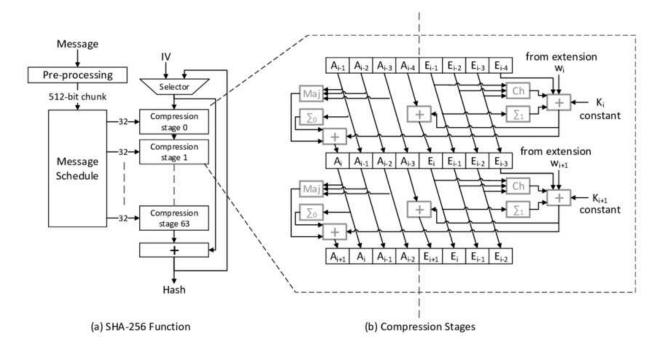
Cryptographic Hash Functions

- Suppose we have a cryptographic hash function h()
 - It takes a message *m* of arbitrary length as input and

. .

Toy example:

$$h(m) = (m^2) \% 4321$$


m	m in hex	h(m)
AAAA	(0x41414141)>	2242
BBBB	(0x42424242)>	893
CCCC	(0x43434343)>	2558
DDDD	(0x4444444)>	2916
EEEE	(0x45454545)>	1967
FFFF	(0x46464646)>	4032
GGGG	(0x47474747)>	469
НННН	(0x48484848)>	4241
IIII	(0x49494949)>	2385
JJJJ	(0x4A4A4A4A)>	3543
KKKK	(0x4B4B4B4B)>	3394
LLLL	(0x4C4C4C4C)>	1938

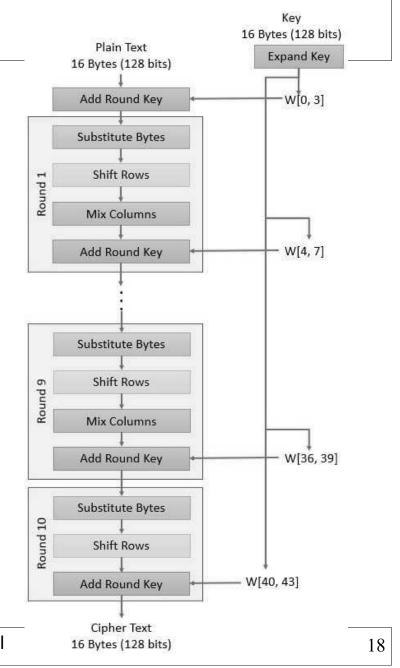
Hash Function Properties

- .
- It should be easy to compute h(m)
- .
- Given h(x), it should be difficult to find x.
- i.e., the reverse of *h()* should be difficult to compute.
- .
- Given x, it should be difficult to find x' where h(x') == h(x)
- i.e., Given a value and a hash function, it should be difficult to find another value that produces the same hash.
- •
- It should be difficult to find two messages x and x' where h(x) == h(x')
- i.e., given a hash function, it should be difficult to find *any* two values that produce the same hash.

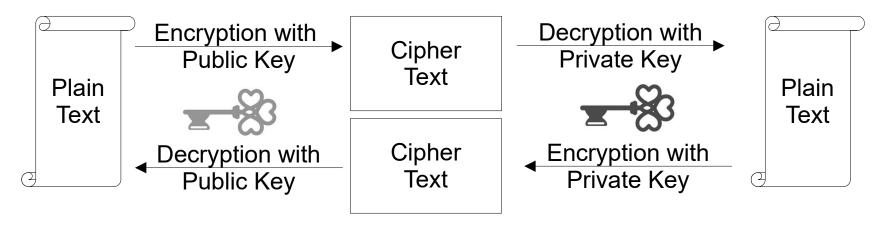
Ideal Hash

- Ideally, we want all these properties for a strong cryptographic hash function.
 - However, not all hash functions provide all these properties.
- Example good crypto hash function: SHA-256.

Private Key Cryptography or Symetric Key Cryptography (One key)


Private (Symmetric) Key Crypto

- One key:
 - _
 - This was the only type of encryption prior to invention of public-key in 1970's.


Private Key Crypto: AES

- AES is an example private key crypto algorithm
 - Need the same key to encrypt and decrypt.

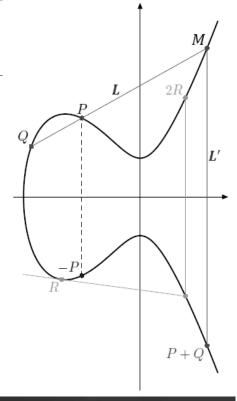
Public Key Crypto or Asymmetric Crypto (Two keys)

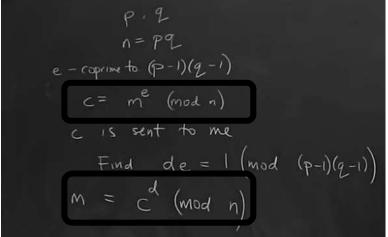
Public Key Crypto (Asymmetric)

- There are two keys:
 - Public key: can be known to anybody
 - Used to encrypt and verify signatures (more below).
 - Private key: ..
 - Used to decrypt and sign signatures (more below).
- Fundamental property of public key encryption:

- ..

Toy Asymmetric Algorithm


- How does asymmetric encryption actually work?
- Key 1 and Key 2 are effectively an "inverse" of each other
- Analogy to Caesar's Cipher
 - Key 1: Encrypt by shifting letter to right by 7
 - Key 2: Decrypt by shifting letter to right by 19
 - Example: Message is "Hi"A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
 - H shifted right by 7 = O
 - O shifted right by 19 = H
 - We are always doing the same algorithm (toy is shifting right).


Generating Keys

- Generating keys
 - The public and private keys are

. .

- Example approaches to generating keys
 - Factoring very large prime numbers,
 - Solving "Twisted Edwards curves" (ed25519)
- Description of RSA algorithm https://www.youtube.com/watch?v=qph77bTKJTM
 - Uses simple numbers to show how it works. 8m

Keeping Secrets

- Example: Keeping Secrets
 - Alice wants to send a secret message to Bob
 - ..
 - Bob decrypts the cipher-text using his private key
- Analysis
 - Since only Bob knows Bob's private key, only Bob can decrypt the cipher-text.
 - Hence Alice and Bob can securely share the message.

Verifying Sender

- Example: Verifying Sender
 - Bob wants Alice to know that he sent a messages and it has not been altered.
 - ..
 - Alice decrypts the cipher-text using Bob's public key.
- Analysis
 - Since only Bob knows Bob's private key,

. .

Alice knows it was Bob who created the message.

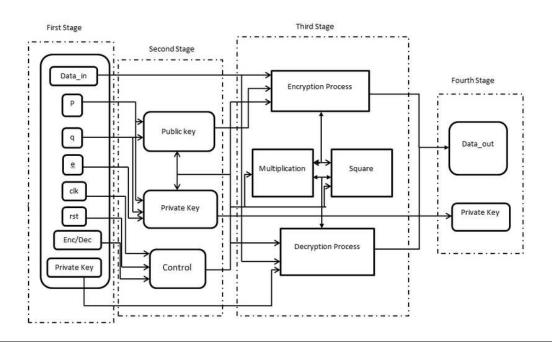
Secret and Verified

- Example: Secret and Verified
 Combine previous two examples.
 - Alice wants to send a verified, secret message.

- ..

- Anyone can decrypt it with her public key.
- But only she can encypt with it; so we know she sent it!

- ..


- Only Bob can decrypt it with his private key.
- Analysis
 - Only Bob can decrypt the message (using his private key), and he'll know that only Alice can create it (using her private key).

Public Key

- Benefit:
 - This does not require having

. .

- Lots of other use cases beyond encryption / decryption
- Example algorithm: RSA.

Summary

- Cryptography
 - From plain text, create cipher text that others cannot read or change.
- Types of algorithms
 - 0 Keys: Hash function
 - 1 Key: Symmetric encryption (private-key)
 - Both sides know the same secret key.
 - 2 Keys: Asymmetric encryption (public-key)
 - You share a public key with the world.
 - Anyone can encrypt messages for you using this key.
 - Only you can decrypt messages using your secret private key which matches the public key.