
25-11-16 1

Inter-Process
Communication:
Shared
Memory

Inter-Process
Communication:
Shared
Memory

© Dr. B. FraserSlides 11.2CMPT 201

Based on content
created by Dr. Steve Ko

25-11-16 2

Topics

● Since memory is so useful and easy to access,
can we load a whole file into memory?

● If processes have separate memory spaces,
how can two processes share memory?

25-11-16 3

Memory Mapping

25-11-16 4

Intro to Memory Mapping

● Memory mapping
– It’s not just for IPC, but we'll need it!

● Uses for Memory Mapping:
– ..

vs using read()/write()

– Allocating memory

– ..
(useful for embedded systems; shared between processors!)

25-11-16 5

mmap()

..
– addr: starting address of the new mapping.

Usually NULL so OS pick the address.

– length: # bytes in mapping.

– prot: Memory protection for executable, readable, writable, or
not accessible.

– flags: MAP_SHARED or MAP_PRIVATE, and optionally
MAP_ANONYMOUS. (explained below)

– fd: .. (explained below)

– offset: the offset into the file to be mapped.

● Returns a pointer to the beginning of the new mapping.

void *mmap(void *addr, size_t length, int prot, int flags, int fd, off_t offset)

25-11-16 6

Types of Memory Mapping

● Two types of memory mappings
– ..

● File is loaded into a memory region

● File I/O becomes memory access:

– Replace read()/write() calls with pointer access to
read or write file.

● This is called a.. memory-mapped file.

● flag argument: MAP_ANONYMOUS flag is not set.

– ..

● This is another way to allocate memory to our process
(in addition to sbrk()).

● malloc() uses both sbrk() and mmap().

● flag argument: MAP_ANONYMOUS flag is set.

25-11-16 7

Shared vs Private

● Memory Mapping can be shared or private.

● Shared Mapping:
– ..

– E.g., ..

● Since memory is cloned, the parent and the child
will share the same mapping.

– Or, multiple processes can map the same file.

● Private Mapping:
– Changes in one process's memory mapping

..

25-11-16 8

4 Possiblities

● Private file mapping:
– A file is mapped to a process

as a private mapping.

– ..

● Private anonymous mapping:
– More memory is allocated

to the calling process.

– ..

(changes not shared).

● Shared file mapping:
– A file is mapped to a process

as a shared mapping.

– Changes propagate to:

● ..

● and other processes
mapping same file.

● Shared anonymous mapping:
– More memory is allocated

to the calling process.

– Memory is shared; changes
propagate to other process!

mmap() arguments: offset = 0
fd = -1 or shm_open()
flag |= MAP_ANONYMOUS

25-11-16 9

Unmap

● int munmap(void *addr, size_t length);
– Unmaps the mapped memory.

25-11-16 10

ABCD: Memory Mapping

● Which of the options below is best described by:
– Used to allow fast access to a temporary copy of a file.

– Used to have two processes access the same memory so
they can both access a shared data structure.

– Used to allow any number of processes to edit a file and see
each others edits, plus reflect changes to file on disk.

a) Shared anonymous mapping

b) Private anonymous mapping

c) Shared file mapping

d) Private file mapping

25-11-16 11

Memory Mapping Activity

● Activity: memory-mapped file I/O.
– Modify the example from man mmap as follows:

– Receive only one command-line argument,
which is a file name.

– Create a file memory mapping for the entire file.

– Print out the content of the entire memory mapping.

25-11-16 12

Shared Memory

25-11-16 13

Sharing memory

Two different ways to share memory between processes.

● For Related processes:
..

– mmap() with MAP_SHARED | MAP_ANONYMOUS
(i.e., shared anonymous)

● For Unrelated Processes:
..

– man 7 shm_overview

● shm_open(): Open a shared memory object

● ftruncate(): Set size

● mmap(): Create memory mapping

25-11-16 14

shm_open()

int shm_open(const char *name, int oflag, mode_t mode)
– Similar to opening a file, but it's shared memory.

● Just like creating a file; listed in /dev/shm/

● E.g., ls /dev/shm/somename

– Returns: file descriptor for..

– name: Known by all participating processes.
General form: /somename.

– flag: O_CREAT flag set when creating a new object.

– mode: For permissions on creation.

25-11-16 15

Size and Map

int ftruncate(int fd, off_t length)
– Memory object is created with size 0.

– ftruncate() sets its size.

void *mmap(void *addr, size_t length,
int prot, int flags, int fd, off_t offset)

– Create memory map for memory object
(after created by shm_open() and size set with ftruncate()).

– ..
(from shm_open()).

25-11-16 16

Cleanup

int munmap(void *addr, size_t length)
– Unmap shared memory when no longer needed.

int shm_unlink(const char *name)
– ..

when done with shared memory.

● Removes file from /dev/shm/.

– However, processes still using the shared memory object
keep using it.

25-11-16 17

ABCD: shm_open()

● When do we need to call shm_open()?

a) When two processes want to share memory.

b) When a parent and child processes want to
share memory without calling fork().

c) When two unrelated processes want to share
memory.

d) When two processes share access to a file and
each process knows the file’s name.

25-11-16 18

Activity: Shared Memory

● Activity
– Write two programs that communicates

with each other via shared memory.

– They should each receive a shared memory object file name
as the only command-line argument.

– One program should write an integer to the shared memory

– The other program should read the integer written by the first
program from the shared memory.

25-11-16 19

Summary

● Two processes can communicate by sharing memory.

● mmap()
– Creates a memory mapping of a file or some memory.

– Usually copied by fork()

– Useful for parent-child shared memory.

– mmap(), munmap()

● shm_open()
– Creates a named shared memory object.

– Useful for unrelated processes to share memory.

– shm_open(), ftruncate(), mmap(), munmap(), shm_unlink()

