

 Topics

e Since memory is so useful and easy to access,
can we load a whole file into memory?

 If processes have separate memory spaces,
how can two processes share memory?

25-11-16 2

Memory Mapping

25-11-16 3

Intro to Memory Mapping

 Memory mapping
- It's not just for IPC, but we'll need it!

* Uses for Memory Mapping:

;/.s using read()/write()
- Allocating memory

.(-useful for embedded systems; shared between processors!)

25-11-16 4

mmap()

void *mmap(void *addr, size_t length, int prot, int flags, int fd, off t offset)

addr: starting address of the new mapping.
Usually NULL so OS pick the address.

length: # bytes in mapping.

prot. Memory protection for executable, readable, writable, or
not accessible.

flags: MAP_SHARED or MAP_PRIVATE, and optionally
MAP_ANONYMOUS. (explained below)

fd: .. (explained below)
offset: the offset into the file to be mapped.

* Returns a pointer to the beginning of the new mapping.

’25—11—16

Types of Memory Mapping

* Two types of memory mappings

* File is loaded into a memory region
* File /0O becomes memory access:

- Replace read()/write() calls with pointer access to
read or write file.

* This is called a.. memory-mapped file.
 flag argument: MAP_ANONYMOUS flag is not set.

e This is another way to allocate memory to our process
(in addition to sbrk()).

* malloc() uses both sbrk() and mmap().
 flag argument: MAP_ANONYMOUS flag is set.

25-11-16 6

Shared vs Private

« Memory Mapping can be shared or private.

* Shared Mapping:

- E.g., ..

e Since memory is cloned, the parent and the child
will share the same mapping.

— Or, multiple processes can map the same file.

* Private Mapping:
— Changes in one process's memory mapping

25-11-16 7

4 Possiblities

- N\
* Private file mapping: * Private anonymous mapping:
- Afile is mapped to a process - More memory is allocated
as a private mapping. to the calling process.

(changes not shared).

* Shared file mapping: Shared anonymous mapping:
- Afile is mapped to a process - More memory is allocated
as a shared mapping. to the calling process.
- Changes propagate to: - Memory is shared; changes
. propagate to other process!
i
« and other processes mmap() arguments: offset = 0

fd = -1 or shm_open()
flag |= MAP_ANONYMOUS

25-11-16 8

mapping same file.

Unmap

* Int munmap(void *addr, size_t length);
- Unmaps the mapped memory.

25-11-16 9

ABCD: Memory Mapping

* Which of the options below is best described by:
- Used to allow fast access to a temporary copy of a file.

- Used to have two processes access the same memory so
they can both access a shared data structure.

- Used to allow any number of processes to edit a file and see
each others edits, plus reflect changes to file on disk.

a) Shared anonymous mapping
b) Private anonymous mapping
c) Shared file mapping
d) Private file mapping

25-11-16

10

Memory Mapping Activity

e Activity: memory-mapped file I/O.
- Modify the example from man mmap as follows:

- Receive only one command-line argument,
which is a file name.

- Create a file memory mapping for the entire file.
- Print out the content of the entire memory mapping.

25-11-16 11

Shared Memory

25-11-16 12

Sharing memory

Two different ways to share memory between processes.

* For Related processes:

- mmap() with MAP_SHARED | MAP_ANONYMOUS
(i.e., shared anonymous)

* For Unrelated Processes:

- man 7 shm_overview
 shm_open(): Open a shared memory object
e ftruncate(): Set size
* mmap(): Create memory mapping

25-11-16 13

shm_openg

Int shm_open(const char *name, int oflag, mode _t mode)
— Similar to opening a file, but it's shared memory.

 Just like creating a file; listed in /dev/shm/
* E.g., Is /dev/shm/somename
- Returns: file descriptor for..

- name: Known by all participating processes.
General form: /somename.

- flag: O _CREAT flag set when creating a new object.
- mode: For permissions on creation.

25-11-16 14

Size and Map

Int ftruncate(int fd, off t length)
- Memory object is created with size O.

- ftruncate() sets its size.

void *mmap(void *addr, size t length,
Int prot, int flags, int fd, off t offset)
- Create memory map for memory object
(after created by shm_open() and size set with ftruncate()).

-(;‘rom shm_open()).

25-11-16 15

Cleanup

Int munmap(void *addr, size t length)
- Unmap shared memory when no longer needed.

iInt shm_unlink(const char *name)

\-/;/hen done with shared memory.
* Removes file from /dev/shm/.

- However, processes still using the shared memory object
keep using it.

25-11-16 16

ABCD: shm_open()

* When do we need to call shm_open()?

a) When two processes want to share memory.

b) When a parent and child processes want to
share memory without calling fork().

c) When two unrelated processes want to share
memory.

d) When two processes share access to a file and
each process knows the file’'s name.

25-11-16 17

Activity: Shared Memory

e Activity
- Write two programs that communicates
with each other via shared memory.

- They should each receive a shared memory object file name
as the only command-line argument.

- One program should write an integer to the shared memory

- The other program should read the integer written by the first
program from the shared memory.

25-11-16 18

Summary

 Two processes can communicate by sharing memory.

e mmap()
- Creates a memory mapping of a file or some memory.

— Usually copied by fork()
- Useful for parent-child shared memory.
- mmap(), munmap()

* shm_open()
- Creates a named shared memory object.

- Useful for unrelated processes to share memory.
- shm_open(), ftruncate(), mmap(), munmap(), shm_unlink()

25-11-16 19

