
25-11-05 1

Networking:
Multiple Clients

© Dr. B. FraserSlides 10.3CMPT 201

Based on content
created by Dr. Steve Ko

25-11-05 2

Topics

● How can one program handle (very?) many requests?
– Specifically a server handle many TCP clients?

25-11-05 3

TCP Server Recap

● Recall that on a TCP server:
– We open the first socket and call accept()

– accept() will return
..

● How can we make our server work with multiple client
sockets?

25-11-05 4

Idea 1: Thread per Connection

● Idea 1:
– ..

– This thread handles the new client's socket.

● Pros:
– Handle multiple clients cleanly.

● Cons:
– ..

25-11-05 5

Idea 2: Non-Blocking Sockets

● Non-blocking accept() will either:
a) accept a new connection immediately or

b) or return immediately if no incoming connection.

– Also use non-blocking read() and write()

● Idea 2:
– ..

– General Idea:
Server will infinitely loop through calling:

● non-blocking-accept to add any new socket to array

● non-blocking-read or non-bloccking-write (or both)
on each socket in array as needed

– Pros: Avoids creating new processes/threads

– Cons: ..

25-11-05 6

Idea 3: Kernel Notify on Socket Event

● Idea 3:
..

– Use non-blocking sockets and kernel notifies program on
socket events.

● ..
– Use syscalls to monitor multiple file descriptors.

– Program is notified when
..

– Use: select(), poll(), and epoll()

25-11-05 7

Idea 3: (cont)

● Generally speaking, this is how I/O multiplexing works:
– We add file descriptors to the monitored list.

– We indicate what events we want to monitor the file
descriptors for, e.g., read and write.

– We call the blocking function to wait for an event,
e.g., select() or epoll()

– When it returns, check which file descriptors can perform I/O.

– We perform the I/O.

● Pros:
– No thread overhead, no polling.

● Cons:
– ..

25-11-05 8

Idea 3: Implementing Sketch with epoll

● 3 Calls to implement I/O Multiplexing with epoll():

epoll_create()
– Returns an epoll instance.

– We can think of this as a
..

epoll_ctl()
– Allows us to

..

● Start by monitoring socket for accept()

● Each new FD from accept() is added to set to monitor

epoll_wait()
– Waits for a file descriptor to be available for I/O

(Code in tcp_server_epoll.c)

25-11-05 9

ABCD: Server choices

● Match the server implementation idea with
the problem it suffers:

1)Non-blocking IO in a loop

2)epoll() to watch sockets

3)Thread per client

a) More complex code

b) Only handle one socket at a time.

c) More likely to use too much system
resources (such as RAM), or too high
kernel overhead.

d) Wastes CPU Time

25-11-05 10

Summary

● accept() returns a new socket for each TCP client.

● Server must likely handle many sockets at once:
– Can create a new thread per socket.

– Can use non-blocking IO to busy-wait checking for ready
sockets

– Can use epoll() or select() to have kernel monitor sockets

