Networking:
Multiple Clients

.
created by Dr. Steve Ko

CMPT 201 Slides 10.3 © Dr. B. Fraser



Topics

 How can one program handle (very?) many requests?
- Specifically a server handle many TCP clients?

25-11-05 2




TCP Server Recap

* Recall that on a TCP server:
- We open the first socket and call accept()

— accept() will return

 How can we make our server work with multiple client
sockets?

25-11-05 3




ldea 1: Thread per Connection

e |dea 1:

- This thread handles the new client's socket.

* Pros:
- Handle multiple clients cleanly.

e Cons:

25-11-05 4




ldea 2: Non-Blocking Sockets

* Non-blocking accept() will either:
a) accept a new connection immediately or

b) or return immediately if no incoming connection.
— Also use non-blocking read() and write()

e |dea 2:

- General Idea:
Server will infinitely loop through calling:

* non-blocking-accept to add any new socket to array

e non-blocking-read or non-bloccking-write (or both)
on each socket in array as needed

- Pros: Avoids creating new processes/threads

- Cons: ..
25-11-05 5




ldea 3: Kernel Notify on Socket Event

e |dea 3:

— Use non-blocking sockets and kernel notifies program on
socket events.

- Use syscalls to monitor multiple file descriptors.
- Program is notified when

- Use: select(), poll(), and epoll()

25-11-05 6




ldea 3: (cont)

* Generally speaking, this is how I/O multiplexing works:
- We add file descriptors to the monitored list.

- We Indicate what events we want to monitor the file
descriptors for, e.g., read and write.

- We call the blocking function to wait for an event,
e.g., select() or epoll()

- When it returns, check which file descriptors can perform 1/O.
- We perform the 1/O.

* Pros:
- No thread overhead, no polling.

e Cons:

’25—11—05 7




ldea 3: Implementing Sketch with epoll

e 3 Calls to implement I/O Multiplexing with epoll():

epoll_create()
- Returns an epoll instance.

- We can think of this as a

epoll_ctl()
- Allows us to

« Start by monitoring socket for accept()
 Each new FD from accept() is added to set to monitor

epoll_wait()
- Waits for a file descriptor to be available for I/O

25-11-05 (Code in tcp_server_epoll.c) 8




ABCD: Server choices

* Match the server implementation idea with

the problem it suffers:
1) Non-blocking 10 in a loop

2) epoll() to watch sockets
3) Thread per client

a) More complex code
b) Only handle one socket at a time.

c) More likely to use too much system
resources (such as RAM), or too high
kernel overhead.

d) wWastes CPU Time

25-11-05 9




Summary

e accept() returns a new socket for each TCP client.

* Server must likely handle many sockets at once:
— Can create a new thread per socket.

— Can use non-blocking 10 to busy-wait checking for ready
sockets

— Can use epoll() or select() to have kernel monitor sockets

25-11-05 10




