Networking:
Multiple Clients

Based on cont



Topics

* How can one program handle (very?) many requests?
— Specifically a server handle many TCP clients?

25-11-05 2




TCP Server Recap
- We open the first socket and call accept()
— accept() will return

* How can we make our server work with multiple client
sockets?

25-11-05 3




ldea 1: Thread per Connection

- This thread handles the new client's socket.

- Handle multiple clients cleanly.

25-11-05 4




ldea 2: Non-Blocking Sockets

a) accept a new connection immediately or
D) or return immediately if no incoming connection.
— Also use non-blocking read() and write()

Server will infinitely loop through calling:
* non-blocking-accept to add any new socket to array

* non-blocking-read or non-bloccking-write (or both)
on each socket in array as needed

- Avoids creating new processes/threads

25-11-05 5




ldea 3: Kernel Notify on Socket Event

— Use non-blocking sockets and kernel notifies program on
socket events.

- Use syscalls to monitor multiple file descriptors.
- Program is notified when

- Use: select(), poll(), and epoll()

25-11-05 6




ldea 3: (cont)

- We add file descriptors to the monitored list.

- We Indicate what events we want to monitor the file
descriptors for, e.g., read and write.

- We call the blocking function to wait for an event,
e.g., select() or epoll()

- When it returns, check which file descriptors can perform 1/O.
- We perform the 1/O.

- No thread overhead, no polling.

25-11-05 7




ldea 3: Implementing Sketch with epoll

epoll_create()
- Returns an epoll instance.

- We can think of this as a

epoll_ctl()
- Allows us to

 Start by monitoring socket for accept()
* Each new FD from accept() is added to set to monitor

epoll_wait()
- Waits for a file descriptor to be available for 1/O

25-11-05 (Code in tcp_server_epoll.c) 8




ABCD: Server choices

* Match the server implementation idea with

the problem it suffers:
1) Non-blocking 10 in a loop

2) epoll() to watch sockets
3) Thread per client

a) More complex code
b) Only handle one socket at a time.
c) More likely to use too much system

resources (such as RAM), or too high
kernel overhead.

d) wWastes CPU Time

25-11-05 9




Summary

e accept() returns a new socket for each TCP client.

— Can create a new thread per socket.

— Can use non-blocking 10 to busy-wait checking for ready
sockets

— Can use epoll() or select() to have kernel monitor sockets

25-11-05 10




