? HBéed on content
e

reat

¥, % :

- TR ¢
e [’ | y Dr. Steve Ko
HBT 201 ' - Slides-8.2— . : © Dr. B. Fraser

Topics

* Can we do something more powerful than just locking?
— Condition variables to “signal” other threads.

- Semaphores to count how many things are available.
* Can we allow multiple readers but only one writer?

* What can we solve with synchronization?
- How do dining philosophers help us with sychronization?

- What's a circular buffer?

25-10-19 2

Condition Variables

25-10-19 3

Producer-Consumer pattern

A common programming pattern.
— Producer(s): one set of threads creating data.
— Consumer(s): one set of threads using the data.

- Store data: shared resource (e.g., variable or buffer) to hold
the values that have been produced but not yet consumed.

25-10-19 4

ABCD: Data race

static int avail = 0;

int main() { static void *thread_func(void *arg) {
pthread_t t1; for (;;) {
pthread_create(&tl, NULL, thread_func, NULL); avail++;
sleep(1);
for (;;) { }
while (avail > 0) {
printf("I just consumed %d\n", avail); return 0;
avail--; }
b
pthread_join(tl, NULL);
}

Is there a data race in this code?

a) Yes, two threads change a shared variable.

b) No, one increments, the other decrements.

c) No, avail is static.

d) No, main()’s while loop prevents concurrent edits to a shared variable.

25-10-19 5

Producer-Consumer

static pthread_mutex_t mtx = PTHREAD_MUTEX_INITIALIZER;
static int avail = 0;

int main() { static void *thread_func(void *arg) {

pthread_t t1; for (;;) {
pthread_create(&t1, NULL, thread_func, NULL); pth;éad mutex_lock(&mtx);
for (;7) { ¢
pthread_mutex_lock(&mtx); .)
{ . Simulate making
. . avail++; .
while (avail > 0) { something one at
// Simulate "consume everything available" a time
printf("I just consumed %d\n", avail); 3 :
avail--; _ _ :
Simulate consuming ggggg?gﬂ“ex—ummk(&mtx) /
: } ~ something: decrement to 0 3 '
pthread_mutex_unlock(&mtx); return 0:

pthread_join(t1, NULL);)

}

25-10-19 6

ABCD: Efficiency

static pthread_mutex_t mtx = PTHREAD_MUTEX_INITIALIZER;
static int avail = 0;

int main() {

pthread t ti; st:tic Y?id *thread_func(void *arg) {
pthread_create(&tl, NULL, thread_func, NULL); o;té;é;d{mutex lock (&mtx) ;
for (;;) { { L
pthread_mutex_lock(&mtx);) avai !
{ while (avail > 0) { p%hreag_mutex_unlock(&mtx);
// Simulate "consume everything available" sleep(1);
printf("I just consumed %d\n", avail); }
avail--; return 0;
3 b
b
, pthread_mutex_unlock(&mtx); What is the major source of
pthread_join(t1, NULL); Inefficiency in this program?

}

a) Wasted space: Use of an int when a bool would be better for "avail".
b) Wasted CPU: main keeps looping even when nothing to consume.

c) Wasted CPU: main locking & unlocking mutex when there are
multiple values to consume.

25.10-19 d) Wasted CPU: Program will never end.

static pthread_mutex_t mtx = PTHREAD_MUTEX_INITIALIZER;

static int avail = 0O;

int main() {
pthread_t t1;

int s = pthread_create(&tl1, NULL, thread_func,

if (s '=0) {
perror("pthread_create");
exit(1);

}

for (;;) {

s = pthread_mutex_lock(&mtx);
if (s 1= 0) {

perror("pthread_mutex_lock");

exit(1);
}

while (avail > 0) {

printf ("I just consumed %d\n", avail);

avail--;

}

s = pthread_mutex_unlock(&mtx);
if (s 1= 0) {

perror("pthread_mutex_unlock");

exit(1);

}

s = pthread_join(tl1, NULL);

if (s 1= 0) {
perror("pthread_create");
exit(1);

NULL);

Producer-Consumer
(with Error Checking)

static void *thread_func(void *arg) {
for (;;) {

int s = pthread_mutex_lock(&mtx);

if (s '=0) {
perror("pthread_mutex_lock");
pthread_exit((void *)1);

¥

avail++;

s = pthread_mutex_unlock(&mtx);

if (s '=0) {
perror("pthread_mutex_unlock");
pthread_exit((void *)1);

3
sleep(1);
3
return 0;

Condition Variable

(1) one thread sends a naotification to the condition variable,

(i) another thread waits until
a notification is sent to the condition variable.

- While waiting,..

25-10-19 9

Integrates with Mutex

* A condition variable works closely with a mutex:

We'll wait until there is data available,..

We need to hold the mutex
while processing data..

That way the producer
(or other consumers)
can do work while we sleep.

25-10-19

pthread Condition Variables

pthread _cond t cond = PTHREAD_COND INITIALIZER,;

pthread cond_wait(pthread _cond_t *cond, pthread mutex_t *mutex);
- Internally, it will:

* Once signalled,..
- Why release mutex when waiting?

cond is paired with a mutex so consumer can be sure that:
- No items added between unlocking mutex and waiting for cond.
(important because a signal with no thread waiting is lost).

- Once woken up, it again holds the mutex.

25-10-19 11

pthread Condition Variables (cont)

. cond
pthread cond_signal(pthread _cond_t *cond);

- How many threads are waiting on cond?
1. It wakes it up one thread.
2+. One wakes up, no control over which one.
0:

. cond
pthread cond_broadcast(pthread cond_t *cond);

- All threads wake up and try to grab mutex;

25-10-19 12

pthread Condition Variables (cont)

signal() and broadcast() are similar; how to choose?
- If any of the waiting threads is sufficient to process the event:

* It's likely that all the threads do the same thing.
- If all of the waiting threads need to respond to an event:

* It's likely each thread does something different
In response to the event; all need to happen

25-10-19 13

Usage Pattern

Producer: Consumer:
pthread _mutex_lock(&mutex); while(true) {
pthread _mutex_lock(&mutex);
<do some work producing an item>
while (<no work to do>) {
pthread _mutex_unlock(&mutex); pthread cond_wait(&cond, &mutex);

}

<do some work>

pthread_cond_signal(&cond);

pthread_mutex_unlock(&mutex);

- Producer should signal after releasing mutex to avoid waking up a
consumer with cond only to wait for mutex (extra context switch)

- Some systems optimize with "wait morphing" to just move process
from one wait queue to another in the OS

25-10-19

Producer-Consumer with Condition Variable

PTHREAD_MUTEX_INITIALIZER;
PTHREAD_COND_INITIALIZER;

static pthread_mutex_t mtx
static pthread_cond_t cond

static int avail = 0;

int main() {
pthread_t t1;
pthread_create(&tl, NULL, thread_func, NULL);

for (;;) {
pthread_mutex_lock(&mtx);

// This while loop 1is new.

while (avail == 0) {
pthread_cond_wait(&cond, &mtx);

b

while (avail > 0) {
// Simulate "consume everything"
printf("--> Consumer:%d.\n", avail);
avail--;

}

pthread_mutex_unlock(&mtx);

¥
pthread_join(t1, NULL);

static void *thread_func(void *arg) {

for (;;) {
pthread_mutex_lock(&mtx);

avail++;
printf("Producer: %d.\n", avail);

pthread_mutex_unlock(&mtx);
// This signal is new.

pthread_cond_signal(&cond);
sleep(1);

Discussion of Code

— mutex still protects the shared variable avall.

— After producing an item, producer sends a signal to cond to
wake up a waiting thread, if any: pthread cond_signal(&cond)

* This notifies other thread there is something to consume.

— At each iteration, consumer checks Iif there is any available
item to consume (the new while loop).

* If nothing's available (avail == 0), it sleeps:
pthread_cond_wait()

* This releases the mutex before sleeping
- Consumer wakes up when signalled by the producer:
* pthread _cond_wait() grabs mutex before returning.

25-10-19 16

pthread cond_ wait() in loop?

— Consumer only has work to do when: (avail != 0)
(avall != 0) is called the..

— Consumer only waits if there is no data to process.
For this, just 1f (avial == 0) seems fine.

- But, we must recheck the

int main() {

' ' : for (;;) {
predicate after we are signalled: O enriad mutex_lock(antx)
* We were waiting on the // This while loop is new.
mutex as well as cond, while (avail == 0) {

pthread_cond_wait(&cond, &mtx);

}

while (avail > 0) {
// Simulate '"consume everything"

* Therefore, no guarantee after , avatles;
a wake-up that data is available.

pthread_mutex_unlock(&mtx);

25-10-19

static pthread_mutex_t mtx
static pthread_cond_t cond
static int avail = 0;

PTHREAD_MUTEX_INITIALIZER;
PTHREAD_COND_INITIALIZER;

int main() {
pthread_t t1;
void *res;
int s;

s = pthread_create(&tl, NULL, thread_func, NULL);
if (s '=0) {

perror("pthread_create");

exit(1);
}

for (;;) {
s = pthread_mutex_lock(&mtx);
if (s '=0) {
perror("pthread_mutex_ lock");
exit(1);

// This while loop is new.
while (avail == 0) {
s = pthread_cond_wait(&cond, &mtx);

if (s '=0) {
perror("pthread_mutex_ lock");
exit(1);

}

3

while (avail > 0) {
/* This 1is simulating "consume everything available" */
printf("--> Consumer: avail at %d.\n", avail);

avail--;

}

s = pthread_mutex_unlock(&mtx);

if (s '=0) {
perror("pthread_mutex_unlock");
exit(1);

}

Producer-Consumer
with Condition Variable
with Error Checking

static void *thread_func(void *arg) {

for (;;) {
int s = pthread_mutex_lock(&mtx);
if (s '=0) {

perror("pthread_mutex_ lock");
pthread_exit((void *)1);

}

avail++;

printf("Producer: avail up to %d.\n", avail);

s = pthread_mutex_unlock(&mtx);

if (s '=0) {
perror("pthread_mutex_unlock");
pthread_exit((void *)1);

}

// This signal 1is new.

s = pthread_cond_signal(&cond);

if (s '=0) {
perror("pthread_cond_signal");
pthread_exit((void *)1);

}
sleep(1);
¥

return 0;

Condition Variable Template for Consumer

#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>

static pthread_mutex_t mtx PTHREAD_MUTEX_INITIALIZER,
static pthread_cond_t cond PTHREAD_COND_INITIALIZER;

int main() {
int s = pthread_mutex_lock(&mtx);

if (s 1= 0) {
perror("pthread_mutex_1lock");
exit(1);

b

while (/* Check if there is nothing to consume */) {
/* Use while, not if, other threads might have woken
up first and changed the shared variable. */
pthread_cond_wait(&cond, &mtx);

}

// Do the necessary work with the shared variable, e.g., consume.

s = pthread_mutex_unlock(&mtx);

if (s = 0) {
perror("pthread_mutex_1lock");
exit(1);

25-10-19

25-10-19 20

Semaphores

- Alock (mutex) is either available or not available, i.e., binary.
- A semaphore is more flexible:

how many are available.

how many items are available to consume?

- If the availablility count is O,
It means the semaphore is..

- If the availablility count is greater than O,
It means the semaphore is..

— Must initialize the semaphore with
an initial max availability count.

25-10-19 21

pthread Semaphore Functions

sem_t sem;
sem_init(sem_t *sem, int pshared, unsigned int value);
- Sets current # available to value for sem.
— pshared indicates if sem is for threads (0) or processes (1).

25-10-19 22

pthread Semaphore Functions

sem_wait(sem_t *sem);
— If count is O, it blocks until count > 0.
- When count is > 0 it decrements count and returns.
- Does not guarantee mutual exclusion to a critical section:

sem_post(sem_t *sem);

- If synchronizing access a..
then posting can be like..

. allow at most 50 students registered in a course.

- If synchronizing between different sections of code,
then it might indicate a new resource produced.

25-10-19 23

ABCD: Semaphore

* Which of these creates a semaphore which
behaves the same as a mutex?

a) sem_init(&sem, 0, 0);
b) sem_init(&sem, 0, 1);

c) sem_init(&sem, 0, 2);
d) sem_init(&mutex, 0, 10);

sem_1init(sem_t *sem, int pshared, unsigned int value);

25-10-19 24

Semaphore Use Ideas

- Can have a..
to acquire and release the resources.

— Can have different parts of the code use them, such as:
* Produce: ..
* Consumer: ..
* May still need a mutex to protect shared data.

25-10-19 25

25-10-19 26

Read-Write Lock

— Another synchronization primitive.

e Multiple readers can all read at the same time!
* Nobody else can access data while anyone writes.

pthread rwlock rdlock(pthread rwlock t *rwlock);

- Allows any thread(s) to grab rwlock for reading as long as
there is no thread that hold it for writing.

pthread rwlock wrlock(pthread rwlock t *rwlock);
— This allows only one thread to grab rwlock for writing.

25-10-19 27

25-10-19 28

Dining Philosophers

— Philosophers sit at a round table.
- Philosophers alternate between eating and thinking.

- To eat, a philosopher needs two forks (at their left and right).
To think, no forks are needed.

- One fork between adjacent philosophers.

- A fork is a shared resource that
only one should access at a time

25-10-19 For more info: https://pages.cs.wisc.edu/~remzi/OSTEP/threads-sema.pdf 29

Try 1: Big lock!

— come up with a solution that protects shared resources
correctly and does not deadlock.

- ldea:
— Correctly avoids deadlocks but

— Linux used to use this approach to
protect kernel resource during a syscall:
“the big kernel lock”

25-10-19 30

Try 1: Lock each fork

- Have all threads grab their right fork and then their left fork.

- But if every philosopher grabs their right fork at the same time,
then..

- The result:..

- We can break any of these conditions to avoid a deadlock.
1) Hold-and-wait

2) Circular wait
3) Mutual exclusion
4) No preemption

25-10-19 31

Possible Solutions

- Most philosophers grab right fork then left fork. Have
have one philosopher grab left fork then right fork.

- Grab the left lock. Try the right lock. If you can't grab it,

éince no philosopher can hold a fork and wait.

— This does not prevent starvation
and could also lead to livelock.

25-10-19 32

Dining Philosophers Implementation

#define NUMBER 5

static pthread_mutex_t mtx[NUMBER] = {PTHREAD_MUTEX_INITIALIZER};

int main() { static void *thread_func(void *arg) {
pthread_t t[NUMBER]; int left = (int)arg;
int right = ((int)arg + 1) % NUMBER;
for (int i = ©; i < NUMBER; ++i) { for (;;) {
pthread_create(&t[i], NULL, printf("Thread %d: thinking\n", (int)arg);
thread_func, i); sleep(5);
} pthread_mutex_lock(&mtx[left]);
for (int i = 0; i < NUMBER; ++i) {
pthread_join(t[i], NULL); if (pthread_mutex_trylock(&mtx[right]) != 0) {
} pthread_mutex_unlock(&mtx[left]);
} continue;

}
printf("Thread %d: eating\n", (int)arg);
pthread_mutex_unlock(&mtx[left]);

pthread_mutex_unlock(&mtx[right]);
}

return 0;

3
25-10-19 33

(Circular Buffer)

25-10-19 34

Bounded Buffer

— Multiple threads share a buffer.

— Producer threads place items into the buffer.
* They must wait..

- Consumers threads take items from the buffer.
* They must wait..

- Producers:
place items from index O to higher indices, one at a time.

- Consumers:
remove items from index O to higher indices, one at a time.

- When get to last element,..

25-10-19 35

Solution

— Mutex protects the data structure for all threads
— Condition variable signals consumer (and producer?)
- Inefficient because..

25-10-19 36

#define SIZE 10 SemaphoreS'
static char buf[SIZE] = {0}; E|egant Solution

static int in = 0, out = 0;

static sem_t filled_cnt;

static sem_t avail_cnt;

static pthread_mutex_t mtx = PTHREAD_MUTEX_INITIALIZER;

int main() {
pthread_t t1;
sem_init(&filled_cnt, 0, 0);
sem_init(&avail_cnt, 0, SIZE);

pthread_create(&tl, NULL, thread_func, NULL);

static void *thread_func(void *arg) {
for (;;) {
sleep(1);
sem_wait(&filled_cnt);
pthread_mutex_lock(&mtx);

// Producer Code

for (int 1 = 0;; i++) {
sem_wait(&avail_cnt);
pthread_mutex_lock(&mtx);

// Produce

buf[in] = 1;

printf("Produced: %d in %d\n", buf[in], in);
in = (in + 1) % SIZE;

// Consume
printf("Consumed: %d\n", buf[out]);
out = (out + 1) % SIZE;

pthread_mutex_unlock(&mtx); pthread_mutex_unlock(&mtx);

sem_post(&filled_cnt); sem_post(&avail_cnt);

) }

pthread_join(t1, NULL); return 0;

) }

Summary

— One thread signals another for an event.
- Paired with a mutex for mutual exclusion.

- Shared data structure storing waiting items.
— Synchronization with a count
- Multiple readers allowed; only one writer.

- Dining Philosophers: worry about deadlock / livelock
- Bounded buffer: elegant semaphore solution.

25-10-19 38

