
25-10-19 1

Synchronization:
Intro & Mutex

© Dr. B. FraserSlides 8.1CMPT 201

Based on content
created by Dr. Steve Ko

25-10-19 2

Topics

● How can we prevent two threads form having a race case?

● How can we code a mutex in C?

● What’s important to get right about locks?

25-10-19 3

Intro

● Synchronization
..

– Careful synchronization avoids difficult to debug race cases.

– Race cases are hard because:

● ..

● ..
not just single path’s correctness.

● We'll learn synchronization primitives:
– locks (mutex)

– condition variables (next slide deck)

– semaphores (next slide deck)

25-10-19 4

Details

● Can find more info in OSTEP book
(more depth than we require)

– Chapter 28 Locks
https://pages.cs.wisc.edu/~remzi/OSTEP/threads-locks.pdf

– Chapter 30 Condition Variables
https://pages.cs.wisc.edu/~remzi/OSTEP/threads-cv.pdf

– Chapter 31 Semaphores
https://pages.cs.wisc.edu/~remzi/OSTEP/threads-sema.pdf

– Chapter 32 Concurrency Bugs
https://pages.cs.wisc.edu/~remzi/OSTEP/threads-bugs.pdf

25-10-19 5

Locks:
Mutexes

25-10-19 6

Motivation

● Recall race case from Threads notes (assume counter = 5):

● What looks like one operation
..

– We need to prevent this mix-up of sub-operations
from different threads.

– Use a lock or a mutex: ..

Thread 1 Thread 2

int tmp1 = counter

tmp1++

counter = tmp1

int tmp2 = counter

tmp2++

counter = tmp2

Thread 1 Thread 2

int tmp1 = counter

int tmp2 = counter

tmp1++

tmp2++

counter = tmp1

counter = tmp2

= 6

= 7 = 6

= 6

25-10-19 7

Locks

● Lock mechanisms consists of:
– ..

– .. function that grabs a lock

– .. function that releases a lock

● E.g.: pthread library's lock:
– Define lock:
pthread_mutex_t myLock = PTHREAD_MUTEX_INITIALIZER;

– Mutex lock function:
int pthread_mutex_lock(pthread_mutex_t *mutex)

– Mutex unlock function:
int pthread_mutex_unlock(pthread_mutex_t *mutex)

Other languages (e.g., Java, Python, etc.)
have similar lock mechanisms.

25-10-19 8

pthread Example

● Locks guarantee: ..

static pthread_mutex_t data_mutex = PTHREAD_MUTEX_INITIALIZER;
static int data[10];

static void *thread0(void *arg) {
 int count = 0;

 pthread_mutex_lock(&data_mutex);
 {

 for (int i = 0; i < 10; i++) {
 count += data[i];
 }

 }
 pthread_mutex_unlock(&data_mutex);
 printf("Sum is %d\n", count);
 pthread_exit(0);
}

static void *thread1(void *arg) {

 pthread_mutex_lock(&data_mutex);

 {
 for (int i = 0; i < 10; i++) {
 data[i] += 1;
 }
 }
 pthread_mutex_unlock(&data_mutex);
 printf("Done update!\n");
 pthread_exit(0);
}

T0 locks
mutex

T1 tries to
lock mutex

T0 access
data[]

T0 unlocks mutex.
This unblocks T1

25-10-19 9

Operation of Lock

● pthread_mutex_lock(&mutex) either:
a) ..

b) ..

● Mutual Exclusion
– Even if multiple threads call lock() at once,

..
all other threads wait

– We cannot control the order in which threads grab the lock.
It depends on the underlying lock mechanism.

● Non-deterministic
– This behaviour is non-deterministic:

..

– Opposite of deterministic behaviour.

25-10-19 10

ABCD: Code with Data Race

int cnt = 0;

static void *thread_func(void *arg) {
 for (int i = 0; i < 10000000; i++)
 cnt++;
 pthread_exit(0);
}

int main(int argc, char *argv[]) {
 pthread_t t1;
 pthread_t t2;

 pthread_create(&t1, NULL, thread_func, NULL);
 pthread_create(&t2, NULL, thread_func, NULL);

 pthread_join(t1, NULL);
 pthread_join(t2, NULL);

 printf("%d\n", cnt);

 exit(EXIT_SUCCESS);
}

a) T2 may start before T1

b) T2 may end before T1

c) T1 and T2 share cnt

d) T1 and T2 share i

This code suffers
a data race.

What is the cause
of this data race?

25-10-19 11

Code with error checking
int cnt = 0;

static void *thread_func(void *arg) {
 for (int i = 0; i < 10000000; i++)
 cnt++;
 pthread_exit(0);
}

int main(int argc, char *argv[]) {
 pthread_t t1;
 pthread_t t2;

 if (pthread_create(&t1, NULL, thread_func, NULL) != 0)
 perror("pthread_create");

 if (pthread_create(&t2, NULL, thread_func, NULL) != 0)
 perror("pthread_create");

 if (pthread_join(t1, NULL) != 0)
 perror("pthread_join");
 if (pthread_join(t2, NULL) != 0)
 perror("pthread_join");

 printf("%d\n", cnt);

 exit(EXIT_SUCCESS);
}

This is the same code
as previous slide,
but shows error

checking on functions.

You should do this!
(Slides omit for brevity)

25-10-19 12

Mutex Protected

● Protect the critical
section with a lock.

● A thread trying to
change cnt must do
so with mutex
locked.

● man
pthread_mutex_lock

● Why not lock outside
the loop?

int cnt = 0;
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

static void *thread_func(void *arg) {
 for (int i = 0; i < 10000000; i++) {
 pthread_mutex_lock(&mutex);
 cnt++;
 pthread_mutex_unlock(&mutex);
 }
 pthread_exit(0);
}

int main(int argc, char *argv[]) {
 pthread_t t1;
 pthread_t t2;

 pthread_create(&t1, NULL, thread_func, NULL);
 pthread_create(&t2, NULL, thread_func, NULL);

 pthread_join(t1, NULL);
 pthread_join(t2, NULL);

 printf("%d\n", cnt);
 exit(EXIT_SUCCESS);
}

25-10-19 13

Lock Usage

25-10-19 14

Atomicity

● Atomicity
– Atomic:

..

Cannot be interfered with by other sections with same lock.

– Mutex lock makes a section of code atomic.

– Atomicity: all or nothing as it runs either
 all operations or no operations at all.

● Serialization and interleaving
– Lock effectively serializes operations:

..

– Operations from different threads are interleaved in some order.

We cannot control the order in which different threads run.

25-10-19 15

Protecting shared variables

● Can have a data race when threads share a variable
– e.g. Accessing same.. cnt++

– e.g. Accessing same..
pSharedBuffer[i] = 52;

● Solve data race with a lock
– Controls and serializes access to shared variable

● Where in the code?
– Data race may be..

e.g.: One function called by multiple threads
tracking next free block to allocate.

– May be in..

thread fills buffer, one thread empties buffer.

25-10-19 16

Multiple locks

● Can have multiple locks
..

– e.g. A system might have:

● data_samples_mutex

● printer_mutex

– Each code section / thread locks the mutex(es)
it needs to lock be safe.

– Reducing..
is important for performance to allow multiple parallel
operations.

25-10-19 17

Non-Blocking Lock

● Options to allow us to control blocking behaviour:
– pthread_mutex_trylock()

..

– pthread_mutex_timedlock()
waits a maximum amount of time before returning if unable to
lock.

25-10-19 18

Critical Section (CS)
and

Thread Safety

25-10-19 19

Critical Section (CS)

● Critical Section:
A critical section is a piece of code that
..
(or more generally, a shared resource) and
..
-- From OSTEP

● Rephrased:
– If a thread is executing the CS,

no other threads should execute the CS.

25-10-19 20

Critical Section (CS)

● An ideal solution for CS problem must satisfy 3 requirements:
– Mutual exclusion

..

– Progress
..

– Bounded waiting
..

i.e., a thread should only be blocked for a finite amount of time.

25-10-19 21

Thread safety & Reentrant

● Thread safe function
..

It either:
a)does not access shared resources or

b)provides proper protection for CS that access shared
resources.

● Reentrant vs nonreentrant functions (related concept)
– A reentrant function is a function that

..

– Must work with different threads (thread safe), and also
..

– i.e., a function called by main() might also be called by a
signal handler on the same thread.

25-10-19 22

ABCD: Thread safety (1)

● How thread safe is this function?

int tmp = 0;

int swap(int *pA, int *pB) {
 tmp = *pA;
 *pA = *pB;
 *pB = tmp;
}

a) Thread safe: YES Reentrant YES

b) Thread safe: YES Reentrant NO

c) Thread safe: NO Reentrant YES

d) Thread safe: NO Reentrant NO

25-10-19 23

ABCD: Thread safety (2)

● How thread safe is this function?

a) Thread safe: YES Reentrant YES

b) Thread safe: YES Reentrant NO

c) Thread safe: NO Reentrant YES

d) Thread safe: NO Reentrant NO

int tmp = 0;
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

int swap(int *pA, int *pB) {
 pthread_mutex_lock(&mutex);
 tmp = *pA;
 *pA = *pB;
 *pB = tmp;
 pthread_mutex_unlock(&mutex);
}

25-10-19 24

ABCD: Thread safety (3)

● How thread safe is this function?

a) Thread safe: YES Reentrant YES

b) Thread safe: YES Reentrant NO

c) Thread safe: NO Reentrant YES

d) Thread safe: NO Reentrant NO

int swap(int *pA, int *pB) {
 int tmp = 0;

 tmp = *pA;
 *pA = *pB;
 *pB = tmp;

}

25-10-19 25

Making Functions Reentrant

● A function might work with some data, like a buffer:
– use a shared global buffer

– use a shared thread-local buffer

● Possible Reentrant Solutions:
– allocate its own local variable buffer on the stack

– dynamically allocate and free new buffer in the heap

– have calling code allocate space and pass it in

● Caller Allocates Technique
– Many functions make the calling code pass in the buffer.

e.g., strtok_r()

– ..

25-10-19 26

Deadlock and Livelock

25-10-19 27

Deadlock

● Deadlock
a condition where a set of threads
..

– The threads get stuck and make no progress.

● E.g.:
– Create mutex locks A & B

– Thread 1: locks A

– Thread 2: locks B, then blocks trying to lock A

– Thread 1: blocks trying to lock B

25-10-19 28

Deadlock Activity

● [15 min]
Write a program that creates two threads and two locks:

Thread #0: Thread #1: Useful Thread Code

● Investigation
– Does it always finish (run multiple times)?

– Does it always not finish (run multiple times)?

– What happens if both threads lock A and B in the same order?

Lock A
Print
Lock B
Print
Unlock B
Unlock A
Print

Lock B
Print
Lock A
Print
Unlock A
Unlock B
Print

#include <pthread.h>
static void *func(void *arg) {
 pthread_exit(0);
}

int main(int argc, char *argv[]) {
 pthread_t t1;

 pthread_create(&t1, NULL, func, NULL);

 pthread_join(t1, NULL);
}

Demo: deadlock.c

25-10-19 29

Necessary Conditions for Deadlock

● 4 conditions are necessary for deadlock:
These do not guarantee deadlock:
deadlock also depends on timing of thread execution.

1)Hold and wait:
..

2) ..
there exists a set {T0, T1, ..., Tn-1} of threads such that
T0 is waiting for a resource that is held by T1,
T1 is waiting for T2, ..., Tn–1 is waiting for T0.

3)Mutual exclusion:
..

4)No preemption:
resource released only voluntarily by the thread holding it

25-10-19 30

Apply Deadlock Conditions

● E.g.: Thread 1 Thread 2

● 4 Conditions to Check
– Hold and wait?

– Circular wait?

– Mutual Exclusion?

– No preemption?

● Deadlock Prevention
– Break one of these for conditions to prevent deadlocks.

Lock A
Print
Lock B
Print
Unlock B
Unlock A
Print

Lock B
Print
Lock A
Print
Unlock A
Unlock B
Print

All 4 conditions hold.
Therefore, it’s

POSSIBLE to have
deadlock.

25-10-19 31

Preventing Deadlocks

● Technique 1:..
– ..

you grab all the locks together or no locks at all

static pthread_mutex_t mutex0 = PTHREAD_MUTEX_INITIALIZER;
static pthread_mutex_t mutex1 = PTHREAD_MUTEX_INITIALIZER;
static pthread_mutex_t another_lock = PTHREAD_MUTEX_INITIALIZER;

static void *thread0(void *arg) {
 pthread_mutex_lock(&another_lock);
 {
 pthread_mutex_lock(&mutex0);
 printf("thread0: mutex0\n");
 pthread_mutex_lock(&mutex1);
 }
 pthread_mutex_unlock(&another_lock);

 printf("thread0: mutex1\n");
 pthread_mutex_unlock(&mutex1);
 pthread_mutex_unlock(&mutex0);
 pthread_exit(0);
}

static void *thread1(void *arg) {
 pthread_mutex_lock(&another_lock);
 {
 pthread_mutex_lock(&mutex1);
 printf("thread1: mutex1\n");
 pthread_mutex_lock(&mutex0);
 }
 pthread_mutex_unlock(&another_lock);

 printf("thread1: mutex0\n");
 pthread_mutex_unlock(&mutex0);
 pthread_mutex_unlock(&mutex1);
 pthread_exit(0);
}

25-10-19 32

Preventing Deadlocks

● Technique 2:..
– Acquiring locks in the same global order for all threads:

..
as all threads try to grab locks in the exact same order.

static pthread_mutex_t mutex0 = PTHREAD_MUTEX_INITIALIZER;
static pthread_mutex_t mutex1 = PTHREAD_MUTEX_INITIALIZER;

static void *thread0(void *arg) {
 pthread_mutex_lock(&mutex0);
 printf("thread0: mutex0\n");

 pthread_mutex_lock(&mutex1);
 printf("thread0: mutex1\n");

 pthread_mutex_unlock(&mutex1);
 pthread_mutex_unlock(&mutex0);
 pthread_exit(0);
}

static void *thread1(void *arg) {
 pthread_mutex_lock(&mutex0);
 printf("thread1: mutex0\n");

 pthread_mutex_lock(&mutex1);
 printf("thread1: mutex1\n");

 pthread_mutex_unlock(&mutex1);
 pthread_mutex_unlock(&mutex0);
 pthread_exit(0);
}

25-10-19 33

Livelock

● Livelock:
where a set of threads each execute instructions actively,
but..

● E.g.: Threads T0 and T1
Each attempts to acquire two resources R0 and R1

– Problem: T0 and T1 run concurrently:
..

– Each frees first resource, and then tries again forever.

while (true)
 Acquire R0
 if R1 is free, then
 Acquire R1
 do work
 Free R1, R0
 return
 else
 Free R0

while (true)
 Acquire R1
 if R0 is free, then
 Acquire R0
 do work
 Free R0, R1
 return
 else
 Free R1

25-10-19 34

Livelock vs Deadlock

● Livelock:
Thread 0 and Thread 1 actively execute code
but do not make any progress.

● Deadlock vs Livelock
– Both deadlocks and livelocks do not make any progress.

In a livelock scenario, threads do still execute.

– In a deadlock scenario,
..

while (true)
 Acquire R0
 if R1 is free, then
 Acquire R1
 do work
 Free R1, R0
 return
 else
 Free R0

while (true)
 Acquire R1
 if R0 is free, then
 Acquire R0
 do work
 Free R0, R1
 return
 else
 Free R1

25-10-19 35

ABCD: Identify the problem

● What synchronization problem is present in this code with two
functions if they are called from different threads, and where M0 and
M1 are mutexes.

a) Race case

b) Non-reentrant

c) Livelock

d) Deadlock

global int cnt = 0;

foo():
 while (true):
 lock M0

 if cnt % 2 == 1 then:
 lock M1
 cnt++
 unlock M1

 unlock M0

bar():
 while (true):
 lock M0

 if cnt % 2 == 0 then:
 lock M1
 cnt++
 unlock M1

 unlock M0

25-10-19 36

Summary

● Mutex
– Used for Mutual Exclusion from a critical section.

– Guarantees only one thread can hold the lock

● Critical Section
– Area of the code which accesses a shared variable that

must not be concurrently accessed from another thread.

● Thread safe: Correctly runs with multiple threads.

● Reentrant: Correctly runs when called again while running (same thread?)

● Deadlock: Two threads blocking each other. Necessary conditions:
– Hold and wait

– Circular wait

– Mutual exclusion

– No preemption

