[=i
- ;i %
/ 17

e e e e i ’ Based on conte
S A L ﬁ eated by Dr. Steve Ko
CMPT 201 " 4\ Slides 8. 4 1 . \@ Dr. B. Fraser

Topics

* How can we prevent two threads form having a race case?
* How can we code a mutex in C?
* What's important to get right about locks?

25-10-19 2

Intro

e Synchronization

— Careful synchronization avoids difficult to debug race cases.
- Race cases are hard because:

not just single path’s correctness.

- locks (mutex)
— condition variables (next slide deck)
- semaphores (next slide deck)

25-10-19 3

Detalls

(more depth than we require)
— Chapter 28
https://pages.cs.wisc.edu/~remzi/OSTEP/threads-locks.pdf

- Chapter 30
https://pages.cs.wisc.edu/~remzi/OSTEP/threads-cv.pdf

- Chapter 31
https://pages.cs.wisc.edu/~remzi/OSTEP/threads-sema.pdf

- Chapter 32
https://pages.cs.wisc.edu/~remzi/OSTEP/threads-bugs.pdf

25-10-19 4

Locks:
Mutexes

25-10-19 5

Motivation

Thread 1
int tmp1 = counter

counter = tmpl

Thread 2

int tmp2 = counter
ﬁ ounter = tmp2

(assume counter = 5)
Thread 1

int tmp1 = counter

Thread 2

int tmp2 = counter

tmpl++
tmp2++
counter = tmpl
counter = tmp2

- We need to prevent this mix-up of sub-operations

from different threads.
- Use a lock or a mutex: ..

25-10-19

- .. function that grabs a lock
a function that releases a lock

- Define lock:
pthread_mutex_t myLOCk = PTHREAD_MUTEX_INITIALIZER;

- Mutex lock function:
int pthread_mutex_lock(pthread_mutex_t *mutex)

- Mutex unlock function:
int pthread_mutex_unlock(pthread_mutex_t *mutex)

Other languages (e.g., Java, Python, etc.)
have similar lock mechanisms.

25-10-19 7

pthread Example

static pthread_mutex_t data_mutex =
static int data[10];

static void *thread0(void *arg) { TO locks
int count = 0; U
pthread_mutex_lock(&data_mutex); T1 tries to
{ lock mutex

for (int i = 0; i < 10; i++) {
count += data[i];

} TO access
: data(]
pthread_mutex_unlock(&data_mutex);

printf("Sum is %d\n", count);
pthread_exit(0);

This unblocks T1

TO unlocks mutex.

PTHREAD_MUTEX_INITIALIZER;

static void *threadil(void *arg) {

:j::>pthread_mutex_lock(&data_mutex);

for (int i = 0; i < 10; i++) {
data[i] += 1;
}
¥

pthread_mutex_unlock(&data_mutex);
printf("Done update!\n");
pthread_exit(0);

Operation of Lock

a)..
)

— Even if multiple threads call lock() at once,

all other threads wait

— We cannot control the order in which threads grab the lock.
It depends on the underlying lock mechanism.

— This behaviour iIs non-deterministic:

— Opposite of deterministic behaviour.

25-10-19 9

ABCD: Code with Data Race

int cnt = 0; This code suffers

static void *thread_func(void *arg) { a data race.
for (int 1 = 0; 1 < 10000000; i++)

pthr§2§+§;it(@). What is the cause

} of this data race?

int main(int argc, char *argv[]) {
pthread_t t1,
pthread_t t2;

pthread_create(&tl, NULL, thread_func, NULL);
pthread_create(&t2, NULL, thread_func, NULL);

ptﬂreag_j oin(tl, NULL); a) T2 may start before T1
t join(t2, NULL);

pthread_join() b) T2 may end before T1
printf("%d\n", cnt); c) T1 and T2 share cnt

exit (EXIT_SUCCESS); d) T1 and T2 share i

25-10-19

Code with error checking

int cnt = 0;

static void *thread_func(void *arg) {

int

for (int i = 0; 1 < 10000000; i++)
cnt++;
pthread_exit(0);

main(int argc, char *argv([]) {
pthread_t t1,
pthread_t t2;

if (pthread_create(&tl, NULL, thread_func, NULL) != 0)
perror("pthread_create");

if (pthread_create(&t2, NULL, thread_func, NULL) != 0)
perror("pthread_create");

if (pthread join(t1, NULL) != 0) This is the same code
perror("pthread join"); as previous slide,
if (pthread_join(t2, NULL) != 0) but shows error

perror("pthread_join"); checking on functions.

printf("%d\n", cnt); _
You should do this!

exit (EXIT_SUCCESS); (Slides omit for brevity)/

Mutex Protected

int cnt = 0;
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

static void *thread_func(void *arg) {
for (int 1 = 0; 1 < 10000000; i++) {
pthread_mutex_lock(&mutex);
cnt++;
pthread_mutex_unlock(&mutex);

b
pthread_exit(0);

}

int main(int argc, char *argv[]) {
pthread_t t1,;
pthread_t t2;

pthread_create(&tl, NULL, thread_func, NULL);
pthread_create(&t2, NULL, thread_func, NULL);

pthread_join(tl, NULL);
pthread_join(t2, NULL);

printf("%d\n", cnt);
ex1it (EXIT_SUCCESS);

Protect the critical
section with a lock.

A thread trying to
change cnt must do
SO with mutex
locked.

man
pthread _mutex_lock

Lock Usage

25-10-19 13

Atomicity

- Atomic;

Cannot be interfered with by other sections with same lock.
- Mutex lock makes a section of code atomic.

— Atomicity: all or nothing as it runs either
all operations or no operations at all.

- Lock effectively serializes operations:

- Operations from different threads are interleaved in some order.
We cannot control the order in which different threads run.

25-10-19 14

Protecting shared variables

= Accessing same.. cnt++

- Accessing same..
pSharedBuffer[i1] = 52;

— Controls and serializes access to shared variable

- Data race may be..
One function called by multiple threads
tracking next free block to allocate.

- May be in..

thread fills buffer, one thread empties buffer.

25-10-19 15

Multiple locks

- e.g. A system might have:
e data_samples _mutex
* printer_mutex

- Each code section / thread locks the mutex(es)
It needs to lock be safe.

- Reducing..
IS Important for performance to allow multiple parallel
operations.

25-10-19 16

Non-Blocking Lock

- pthread_mutex_trylock()

- pthread_mutex_timedlock()
waits a maximum amount of time before returning if unable to
lock.

25-10-19 17

Critical Section (CS)
and
Thread Safety

25-10-19 18

Critical Section (CS)

A critical section is a piece of code that

(or more generally, a shared resource) and

-- From OSTEP

- If a thread is executing the CS,
no other threads should execute the CS.

25-10-19

19

Critical Section (CS)

- Mutual exclusion
- Progress

- Bounded waiting

a thread should only be blocked for a finite amount of time.

25-10-19 20

Thread safety & Reentrant

e Thread safe function

It either:
a) does not access shared resources or

b) provides proper protection for CS that access shared
resources.

* Reentrant vs nonreentrant (related concept)
- A reentrant function is a function that

— Must work with different threads (thread safe), and also

- , a function called by main() might also be called by a

signal handler on the same thread.
25-10-19 21

a) Thread safe: YES Reentrant YES

ABCD Thread Safety (1) b) Thread safe: YES Reentrant NO

c) Thread safe: NO Reentrant YES
d) Thread safe: NO Reentrant NO

e How thread safe is this function?

int tmp = 0;

int swap(int *pA, int *pB) {
tmp = *pA;

*PA = *pB;
*pB tmp;

25-10-19

a) Thread safe: YES Reentrant YES
b) Thread safe: YES Reentrant NO

c) Thread safe: NO Reentrant YES
d) Thread safe: NO Reentrant NO

ABCD: Thread safety (2)

e How thread safe is this function?

int tmp = 0,
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

int swap(int *pA, int *pB) {
pthread_mutex_lock(&mutex);

tmp = *pA;
“PA = *pB;
*PB = tmp;

pthread_mutex_unlock(&mutex);

25-10-19

a) Thread safe: YES Reentrant YES

ABCD Thread Safety (3) b) Thread safe: YES Reentrant NO

c) Thread safe: NO Reentrant YES
d) Thread safe: NO Reentrant NO

e How thread safe is this function?

int swap(int *pA, int *pB) {
int tmp =

tmp = *pA;

*PA = *pB;
*pB tmp;

25-10-19

Making Functions Reentrant

— use a shared global buffer
— use a shared thread-local buffer

- allocate its own local variable buffer on the stack
- dynamically allocate and free new buffer in the heap
- have calling code allocate space and pass it in

- Many functions make the calling code pass in the buffer.
, strtok_r()

25-10-19 25

Deadlock and Livelock

25-10-19 26

Deadlock

a condition where a set of threads

- The threads get stuck and make no progress.

— Create mutex locks A & B

- Thread 1: locks A

— Thread 2: locks B, then blocks trying to lock A
— Thread 1: blocks trying to lock B

25-10-19 27

Deadlock Activity

* [15 min]

Thread #0: Thread #1:

Lock A Lock B
Print Print
Lock B Lock A
Print Print

Useful Thread Code

#include <pthread.h>

static void *func(void *arg) {
pthread_exit(0);

b

int main(int argc, char *argv[]) {
pthread_t t1,;

Unlock B Unlock A
Unlock A Unlock B
Print Print

pthread_create(&tl, NULL, func, NULL);

pthread_join(t1, NULL);
}

- Does it always finish (run multiple times)?
- Does it always not finish (run multiple times)?
- What happens if both threads lock A and B in the same order?

25-10-19 Demo: deadlock.c 28

Necessary Conditions for Deadlock

These do not guarantee deadlock:
deadlock also depends on timing of thread execution.

1) Hold and walit:

2)..
there exists a set {TO, T1, ..., Tn-1} of threads such that
TO is waiting for a resource that is held by T1,
T1 is waiting for T2, ..., Tn—1 is waiting for TO.

3) Mutual exclusion:

4) No preemption:
resource released only voluntarily by the thread holding it

25-10-19 29

Apply Deadlock Conditions

Lock A
Print
Lock B
Print

Lock B
Print
Lock A
Print

Unlock B
Unlock A
Print

Unlock A
Unlock B
Print

- Hold and wait?
_ _ All 4 conditions hold.
— Circular wait? Therefore, it’s

— Mutual Exclusion? POSSIBLE to have
deadlock.

- No preemption?

- Break one of these for conditions to prevent deadlocks.
25-10-19 30

Preventing Deadlocks

you grab all the locks together or no locks at all

static pthread_mutex_t mutex0 PTHREAD_MUTEX_INITIALIZER;
static pthread_mutex_t mutexl PTHREAD_MUTEX_INITIALIZER;
static pthread_mutex_t another_lock = PTHREAD_MUTEX_ INITIALIZER,;

static void *thread@(void *arg) { static void *threadi(void *arg) {
?thread_mutex_lock(&another_lock); pthread_mutex_lock(&another_lock);
{
pthread_mutex_lock(&mutex0); pthread_mutex_lock(&mutex1);
printf("thread0: mutexo\n"); printf("threadl: mutexi\n");
, pthread_mutex_lock(&mutexl); pthread_mutex_lock(&mutex0);

pthread_mutex_unlock(&another_lock) ; pthread_mutex_unlock(&another_lock);

printf("thread0: mutexi\n"); printf("threadl: mutexo\n");
pthread_mutex_unlock(&mutex1); pthread_mutex_unlock(&mutex0);
pthread_mutex_unlock(&mutex0) ; pthread_mutex_unlock(&mutex1);
pthread_exit(0); pthread_exit(0);

25-10-19

Preventing Deadlocks

— Acquiring locks in the same global order for all threads:

as all threads try to grab locks in the exact same order.

static pthread_mutex_t mutex0 PTHREAD_MUTEX_INITIALIZER;
static pthread_mutex_t mutexl PTHREAD_MUTEX_INITIALIZER;

static void *thread0(void *arg) { static void *threadl(void *arg) {
pthread_mutex_lock(&mutex0); pthread_mutex_lock(&mutexo0);
printf("thread0: mutex0\n"); printf("threadl: mutex0\n");

pthread_mutex_lock(&mutex1); pthread_mutex_lock(&mutex1);
printf("thread0: mutexi\n"); printf("threadl: mutexi\n");

pthread_mutex_unlock(&mutex1); pthread_mutex_unlock(&mutexl);

pthread_mutex_unlock(&mutex0); pthread_mutex_unlock(&mutex0);
pthread_exit(0); pthread_exit(0);

25-10-19

Livelock

where a set of threads each execute instructions actively,
but..

Each attempts to acquire two resources RO and R1

while (true) while (true)
Acquire RO Acquire R1
if R1 is free, then if RO 1is free, then
Acquire R1 Acquire RO

do work do work
Free R1, RO Free RO, R1
return return

else else
Free RO Free R1

- Problem: TO and T1 run concurrently:

- Each frees first resource, and then tries again forever.
25-10-19 33

Livelock vs Deadlock

while (true) while (true)
Acquire RO Acquire R1
if R1 is free, then if RO 1is free, then
Acquire R1 Acquire RO

do work do work
Free R1, RO Free RO, R1
return return

else else

Free RO Free R1

Thread 0 and Thread 1 actively execute code
but do not make any progress.

— Both deadlocks and livelocks do not make any progress.
In a livelock scenario, threads do still execute.

- In a deadlock scenario,

25-10-19

34

ABCD: |Identify the problem

* What synchronization problem is present in this code with two
functions if they are called from different threads, and where MO and
M1 are mutexes.

global int cnt = 0O,

foo(): bar():
while (true): while (true):
lock MO lock MO

if cnt % 2 == 1 then: if cnt % 2 == 0 then:
lock M1 lock M1
cnt++ cnt++
unlock M1 unlock M1

unlock MO unlock MO

a) Race case

b) Non-reentrant
c) Livelock

d) Deadlock

25-10-19

Summary

- Used for Mutual Exclusion from a critical section.
— Guarantees only one thread can hold the lock

— Area of the code which accesses a shared variable that
must not be concurrently accessed from another thread.

. . Correctly runs with multiple threads.
. . Correctly runs when called again while running (same thread?)
. . Two threads blocking each other. Necessary conditions:

- Hold and wait

— Circular wait

- Mutual exclusion
— No preemption

25-10-19 36

