

 Topics

* How can two “threads of execution”
share the same memory space?

e How can we start and work with threads?

25-10-19 2

What's a Thread

e Whatis a Thread?

— Similar to a process but it's lighter weight.
- Sometimes called..

* Main Thread
— A process always has at least one thread,
called main thread: from main()

25-10-19 3

Detalls

e Can find more info iIn OSTEP book

(more depth than we require)
— Chapter 26 Concurrency: An Introduction
https://pages.cs.wisc.edu/~remzi/OSTEP/threads-intro.pdf

— Chapter 27 Interlude: Thread API
https://pages.cs.wisc.edu/~remzi/OSTEP/threads-api.pdf

25-10-19 4

.

Threads vs Processes

25-10-19 5

Thread vs Process

* If threads and processes execute in parallel on Frocess A

address space

different cores, then what are the difference? Kernel
a Main
Thread’s
fork() creates a child process with its own Stack
address space.
Thread 2’s
- . Stack
text, data, bss, and heap segments.
: Memory
 Each thread gets its own: Mapping
- stack
- registers Heap
- program counter (running different function) [B)Sts
ata
- errno Text

25-10-19 6

Benefits on Threads & Processes

* Benefit of a thread
— Threads in a process share the same addresses

- E.g., any thread can read from or write to a global variable.
Can pass pointers between them.

* Benefit of a process

25-10-19 7

POSIX Threads

25-10-19 8

man pthreads

pthreads(7) Miscellaneous Information Manual pthreads(7)

NAME
pthreads - POSIX threads

DESCRIPTION
POSIX.1 specifies a set of interfaces (functions, header files) for
threaded programming commonly known as POSIX threads, or Pthreads. A sin-
gle process can contain multiple threads, all of which are executing the
same program. These threads share the same global memory (data and heap
segments), but each thread has its own stack (automatic variables).

 man pthreads
Review sections:
— Description: What's shared & not

- Return value & errno
- Thread ID
- Thread safe Functions

25-10-19

Common Functions

e pthread create()
- Check man page

- pthread_t: this is the type used for thread IDs.

-(.that will run as a thread).
- void *arg, passed in.

 void* can be cast to any pointer.
Use a struct to pass multiple arguments.

- pthread_attr_t specifies various attributes of the new thread.

» pthread_exit() terminates the calling thread.
— Done implicitly when returning from thread function
return 0; // Leaving thread function!

25-10-19 10

Common Functions

e pthread_self()
- Returns the caller's id

e pthread_join()

— Thread return value with "void **retval .

e pthread detach()
- Lets the calling thread just run.

— You can use this when you don't need to return anything.

25-10-19 11

ABCD: PThread

 Each thread gets its own...

a) Stack

b) Heap

c) Text / Code
d) stdout

25-10-19 12

ABCD: pthread create()

* Which of the following is true about pthread create()?

a) It creates a new process running the provided thread start
function.

b) It passes nothing to the function (void).
c) It waits until the spawned thread finishes.
d) It stores the thread id for later user.

25-10-19 13

Pthread Activity

* [15 min] Write a program where:

- Main thread will: Start simple!
Make a thread
e create another thread. and print “hi”!

* wait until thread terminates,
* print out the return value.
- New thread accept a string as its argument,
 print out the argument and its own ID (use gettid()),
* return the length of the received string.

Thread function can return a number: main() can get the number:
return (void*) 42; void* ret_val = 0;

pthread_join(...);

printf(“%ul”, (uinté4 t) ret val);

— Compile with "-pthread” compiler option:
e.g., clang -pthread example.c.

25-10-19 14

Data Race

25-10-19 15

Data Race Activity

e [10 min] Activity:
Write a program that has two additional threads.

- Create global variable:
Int cnt = O;

— Each new thread adds 1 to cnt” 10 million times.
- Main thread waits for new threads, and prints cnt'.

* Run multiple times; see output!

25-10-19 16

Deterministic

e Deterministic:

Usually, this is what we want!

- Note that the “behaviour’” might not be the same each time:
the order that threads get scheduled will be different each
time.

- However, non-deterministic behaviour does not lead to
non-deterministic output unless you have a race case.

Usually, what we want to avoid!

25-10-19 17

Data Race Problem

* Consider the statement counter++
- It seems like counter++ is one operation.

Int tmpRegister = counter, // Load from memory
tmpRegister++; // Charge value
counter = tmpRegister; // Store value to memory

* What happen if this runs on 2 threads? (assume counter = 5)

Thread 1 Thread 2 Thread 1 Thread 2
int tmp1 = counter int tmp1 = counter
tmpl++ int tmp2 = counter
counter = tmp1 tmpl++
int tmp2 = counter tmp2++
tmp2++ counter = tmp1l
=7 ounter = tmp2 4@ counter = tmp2

e,
25-10-19 18

Race Condition

 Data Race
— This is called the data race problem:

* Race Condition
- More generally, a race condition is a condition in which

* Difference between a Data Race and a Race Condition
- Very similar and related ideas.

- We’'ll not get into details. For more info:
https://blog.regehr.org/archives/490

25-10-19 19

Summary

* Threads
- Lightweight processes that share a memory space.

- Always have main thread

 PThread
- POSIX library / API for threads

- pthread_create(), pthread_join(), ...

 Data Race
- When two threads may access the same data at the same
time.

25-10-19 20

