
25-10-19 1

Threads

© Dr. B. FraserSlides 7CMPT 201

Based on content
created by Dr. Steve Ko

25-10-19 2

Topics

● How can two “threads of execution”
share the same memory space?

● How can we start and work with threads?

25-10-19 3

What’s a Thread

● What is a Thread?
..

– Similar to a process but it's lighter weight.

– Sometimes called..

● Main Thread
– A process always has at least one thread,

called main thread: from main()

25-10-19 4

Details

● Can find more info in OSTEP book
(more depth than we require)

– Chapter 26 Concurrency: An Introduction
https://pages.cs.wisc.edu/~remzi/OSTEP/threads-intro.pdf

– Chapter 27 Interlude: Thread API
https://pages.cs.wisc.edu/~remzi/OSTEP/threads-api.pdf

25-10-19 5

Threads vs Processes

25-10-19 6

Thread vs Process

● If threads and processes execute in parallel on
different cores, then what are the difference?

– ..

fork() creates a child process with its own
address space.

– ..
text, data, bss, and heap segments.

● Each thread gets its own:
– stack

– registers

– program counter (running different function)

– errno Text

Data

BSS

Heap

Kernel

Memory
Mapping

Thread 2’s
Stack

Process A’s
address space

Main
Thread’s

Stack

25-10-19 7

Benefits on Threads & Processes

● Benefit of a thread
– Threads in a process share the same addresses

..

– E.g., any thread can read from or write to a global variable.

Can pass pointers between them.

– ..

● Benefit of a process
– ..

25-10-19 8

POSIX Threads

25-10-19 9

man pthreads

● man pthreads
Review sections:

– Description: What’s shared & not

– Return value & errno

– Thread ID

– Thread safe Functions

25-10-19 10

Common Functions

● pthread_create()
– Check man page

– pthread_t: this is the type used for thread IDs.

– ..
(that will run as a thread).

– void *arg, passed in.

● void* can be cast to any pointer.
Use a struct to pass multiple arguments.

– pthread_attr_t specifies various attributes of the new thread.

● pthread_exit() terminates the calling thread.
– Done implicitly when returning from thread function

return 0; // Leaving thread function!

25-10-19 11

Common Functions

● pthread_self()
– Returns the caller's id

..

● pthread_join()
– ..

– Thread return value with `void **retval`.

● pthread_detach()
– Lets the calling thread just run.

– You can use this when you don't need to return anything.

25-10-19 12

ABCD: PThread

● Each thread gets its own...

a) Stack

b) Heap

c) Text / Code

d) stdout

25-10-19 13

ABCD: pthread_create()

● Which of the following is true about pthread_create()?

a) It creates a new process running the provided thread start
function.

b) It passes nothing to the function (void).

c) It waits until the spawned thread finishes.

d) It stores the thread_id for later user.

25-10-19 14

Pthread Activity
● [15 min] Write a program where:

– Main thread will:

● create another thread.

● wait until thread terminates,

● print out the return value.

– New thread accept a string as its argument,

● print out the argument and its own ID (use gettid()),

● return the length of the received string.

– Compile with `-pthread` compiler option:
e.g., `clang -pthread example.c`.

Start simple!
Make a thread
and print “hi”!

main() can get the number:
 void* ret_val = 0;
 pthread_join(...);
 printf(“%ul”, (uint64_t) ret_val);

Thread function can return a number:
 return (void*) 42;

25-10-19 15

Data Race

25-10-19 16

Data Race Activity

● [10 min] Activity:
Write a program that has two additional threads.

– Create global variable:
int cnt = 0;

– Each new thread adds 1 to `cnt` 10 million times.

– Main thread waits for new threads, and prints `cnt`.

● Run multiple times; see output!

25-10-19 17

Deterministic

● Deterministic:
– ..

Usually, this is what we want!

– Note that the “behaviour” might not be the same each time:
the order that threads get scheduled will be different each
time.

– However, non-deterministic behaviour does not lead to
non-deterministic output unless you have a race case.

Usually, what we want to avoid!

25-10-19 18

Data Race Problem
● Consider the statement counter++

– It seems like `counter++` is one operation.

– ..

int tmpRegister = counter; // Load from memory
tmpRegister++; // Charge value
counter = tmpRegister; // Store value to memory

● What happen if this runs on 2 threads? (assume counter = 5)

Thread 1 Thread 2

int tmp1 = counter

tmp1++

counter = tmp1

int tmp2 = counter

tmp2++

counter = tmp2

Thread 1 Thread 2

int tmp1 = counter

int tmp2 = counter

tmp1++

tmp2++

counter = tmp1

counter = tmp2

= 6

= 7 = 6

= 6

25-10-19 19

Race Condition

● Data Race
– This is called the data race problem:

..

● Race Condition
– More generally, a race condition is a condition in which

..

● Difference between a Data Race and a Race Condition
– Very similar and related ideas.

– We’ll not get into details. For more info:
https://blog.regehr.org/archives/490

25-10-19 20

Summary

● Threads
– Lightweight processes that share a memory space.

– Always have main thread

● PThread
– POSIX library / API for threads

– pthread_create(), pthread_join(), ...

● Data Race
– When two threads may access the same data at the same

time.

