B e g W ' Based on content
. e T - created by Dr. Steve Ko

Slides 7 © Dr. B. Frase

Topics

 How can two “threads of execution”
share the same memory space?

e How can we start and work with threads?

25-10-19 2

What's a Thread

— Similar to a process but it's lighter weight.
- Sometimes called..

- A process always has at least one thread,
called main thread: from main()

25-10-19 3

Detalls

(more depth than we require)
- Concurrency: An Introduction
https://pages.cs.wisc.edu/~remzi/OSTEP/threads-intro.pdf

- Thread API
https://pages.cs.wisc.edu/~remzi/OSTEP/threads-api.pdf

25-10-19 4

25-10-19 5

Thread vs Process

¢ threads processes Process A's

address space

Kernel

Main
Thread’s

fork() creates a child process with its own Sl

address space.

Thread 2’s
Stack

text, data, bss, and heap segments.

Memory
° Mapping
- stack
- registers Heap

BSS

Data
— €ermo Toxt

- program counter (running different function)

25-10-19 6

Benefits on Threads & Processes

- Threads in a process share the same addresses

- , any thread can read from or write to a global variable.
Can pass pointers between them.

25-10-19 7

POSIX Threads

25-10-19 8

man pthreads

pthreads(7) Miscellaneous Information Manual pthreads(7)
pthreads — POSIX threads

POSIX.1 specifies a set of interfaces (functions, header files) for
threaded programming commonly known as POSIX threads, or Pthreads. A sin-
gle process can contain multiple threads, all of which are executing the
same program. These threads share the same global memory (data and heap
segments), but each thread has its own stack (automatic variables).

* man pthreads

Review sections:
— Description: What's shared & not

- Return value & errno
- Thread ID
- Thread safe Functions

25-10-19 9

Common Functions

e pthread create()
— Check man page

- pthread t: this is the type used for thread IDs.

.(.that will run as a thread).
- void *arg, passed in.

 void* can be cast to any pointer.
Use a struct to pass multiple arguments.

- pthread attr t specifies various attributes of the new thread.

* pthread exit() terminates the calling thread.
- Done implicitly when returning from thread function
return 0; // Leaving thread function!

25-10-19 10

Common Functions

e pthread_self()
- Returns the caller's id

* pthread join()

— Thread return value with "void **retval .

* pthread_detach()
- Lets the calling thread just run.

— You can use this when you don't need to return anything.

25-10-19 11

ABCD: PThread

* Each thread gets its own...

Stack
Heap

Text / Code
stdout

25-10-19 12

ABCD: pthread create()

* Which of the following is true about pthread create()?

a) It creates a new process running the provided thread start
function.

b) It passes nothing to the function (void).
c) It waits until the spawned thread finishes.

d) It stores the thread_id for later user.

25-10-19 13

Pthread Activity

- Main thread will: Start simple!
Make a thread
e create another thread. and print “hi”!

 wait until thread terminates,
* print out the return value.
- New thread accept a string as its argument,
e print out the argument and its own ID (use gettid()),
* return the length of the received string.

Thread function can return a number: main() can get the number:
return (void*) 42; void* ret_val = 0;
pthread_join(...);
printf(“%ul”, (uint64 _t) ret val);

— Compile with "-pthread” compiler option:
, clang -pthread example.c'.

25-10-19 14

Data Race

25-10-19 15

Data Race Activity

Write a program that has two additional threads.
- Create global variable:
Int cnt = 0;

- Each new thread adds 1 to cnt” 10 million times.
- Main thread waits for new threads, and prints cnt'.

* Run multiple times; see output!

25-10-19 16

Deterministic

Usually, this is what we want!

- Note that the “behaviour” might not be the same each time:
the order that threads get scheduled will be different each
time.

- However, non-deterministic behaviour does not lead to
non-deterministic output unless you have a race case.

Usually, what we want to avoid!

25-10-19 17

Data Race Problem

e counter++
- It seems like counter++ is one operation.

Int tmpRegister = counter;
tmpRegister++;
counter = tmpRegister;

* What happen if this runs on 2 threads? (assume counter = 5)

Thread 1 Thread 2 Thread 1 Thread 2
int tmp1 = counter

int tmp1 = counter
int tmp2 = counter
counter = tmp1 tmpl++

int tmp2 = counter tmp2++

n ounter = tmp2 P

counter = tmp2

||

25-10-19

Race Condition

— This is called the data race problem:

- More generally, a race condition is a condition in which

- Very similar and related ideas.

- We'll not get into details. For more info:
https://blog.regehr.org/archives/490

25-10-19 I

Summary

- Lightweight processes that share a memory space.
- Always have main thread

- POSIX library / API for threads
- pthread_create(), pthread_join(), ...

- When two threads may access the same data at the same
time.

25-10-19 20

