
25-09-06 1

Processes
waitpid(), errno

© Dr. B. FraserSlides 2cCMPT 201

Based on content
created by Dr. Steve Ko

25-09-06 2

Topics

1) How can a parent process wait for a child?

2) How can we know what errors have happened?

25-09-06 3

Waiting for a child:
wait()

25-09-06 4

wait()

● wait()
..

– Family of calls; we'll usually use waitpid(),
but refer to them as just wait()

● Common usage

pid_t pid = fork();
if (pid != 0) {

 // Parent waits for child process to finish
 if (waitpid(pid, ...) == -1) {
 // Exit on error
 }

} else {
 // Child does something.. exec?
}

25-09-06 5

man 2 wait

A lot to understand in just a
single syscall!

What are these options?

25-09-06 6

Parts of waitpid()

● pid
– ..

● wstatus
– pointer to an int to store..

– _Nullable tells reader OK to be NULL

● options
– we'll leave as 0; can specify non-blocking (don’t wait)

e.g., WNOHANG

pid_t waitpid(pid_t pid, int *_Nullable wstatus, int options);

25-09-06 7

wstatus

● waitpid() takes a pointer for wstatus
– Calling code (e.g., main())

..

– waitpid() given a pointer to this space

– waitpid() writes an answer into that space

● Effectively, main() declares a variable so waitpid() has
somewhere to write info; called an..

pid_t pid = fork();
if (pid) {
 int wstatus = 0;
 if (waitpid(pid, &wstatus, 0) == -1) {
 perror("waitpid");
 exit(EXIT_FAILURE);
 }
}

25-09-06 8

wait() Status Check Macros

● Why did the child terminate?
(wstatus(): is a complicated value)

– Normally: exit() or return from main

– Terminated by Signal?

if (WIFEXITED(wstatus)) {
 printf("Reason: %d\n", WEXITSTATUS(wstatus));
}

if (WIFSIGNALED(wstatus)) {
 printf("Terminated by signal # %d\n",

 WTERMSIG(status));
}

25-09-06 9

Activity: wait()

● (10 mins) Write a program that:
– Creates a child process

– Child process runs `ls -a -l`

– Parent process waits for the child process to terminate using
waitpid()

– If child exits normally, print the exit status.

● Hints:
– OK to reuse previous code examples from class.

– Use execl(); pass in arguments separately

25-09-06 10

Zombies and Orphans

25-09-06 11

Zombies

● What happens when an application terminates?
– OS retains some state information of terminated processes

(so parent can find out reason for exiting)

– This takes up some memory.

– Calling wait() on a terminated process frees this memory.

● Zombie
Process state where child process terminates
..

(It's dead, but not completely)

– Having many zombies uses kernel resources;
so important to always wait() on child process.

25-09-06 12

Orphans

● Orphan
– This is the state where..

– Orphan processes no longer have a parent process.

● Linux handling of Orphan Processes
– Orphan child process becomes a child process of init

– init calls wait() on all child processes

Generate image: https://deepai.org/

25-09-06 13

ABCD: wait()

● Which of the following is true about wait()?

a) wait() takes care of orphans.

b) wait() combats the spread of zombies.

c) wait() is a replacement for `sleep()`.

d) wait() allows child process to get input from parent.

25-09-06 14

What went wrong?
errno

25-09-06 15

man errno

● Run:
man errno

– What do you notice about it?

● Look at:
– Description

– When is it useful?

– What is its type?

– How can my program get access to it?

25-09-06 16

errno & perror

● errno is an integer variable that is..

– Adds more information about which error has occurred.

– It is defined in errno.h

– C can print an explanation for you from just the errno
using perror(“your message here”)

● errno is similar to wstatus from wait():
– Status code set by a system call if there’s an error.

if (somecall() == -1) {
 if (errno == EACCESS) {
 printf("You don't have access.\n");
 } else {
 perror("somecall() failed")
 }
}

25-09-06 17

Demo: fork-bomb with errors

● fork() sets errno on failure
– man fork

Checkout possible
errno values.

● Demo?
– ulimit -S -u 100

fork-bomb with error output

#include <errno.h>
#include <stdio.h>
#include <unistd.h>

int main() {
 while (1) {
 if (fork() == -1) {
 char *str = NULL;
 switch (errno) {
 case EAGAIN:
 str = "EAGAIN";
 break;
 case ENOMEM:
 str = "ENOMEM";
 break;
 case ENOSYS:
 str = "ENOSYS";
 break;
 default:
 break;
 }
 perror("fork");
 printf("%s\n", str);
 }
 }
}

25-09-06 18

Code from Activities

25-09-06 19

waitpid() on child
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <wait.h>

int main() {
 pid_t pid = fork();

 if (pid) {
 int wstatus = 0;
 if (waitpid(pid, &wstatus, 0) == -1) {
 perror("waitpid");
 exit(EXIT_FAILURE);
 }

 if (WIFEXITED(wstatus)) {
 printf("Child done with exit status: %d\n", WEXITSTATUS(wstatus));
 } else {
 printf("Child did not exit normally.\n");
 }
 } else {
 if (execl("/usr/bin/ls", "/usr/bin/ls", "-a", "-l", NULL) == -1) {
 perror("execl");
 exit(EXIT_FAILURE);
 }
 }

 return 0;
}

25-09-06 20

Summary

● Waiting on your children:
wait(), waitpid()

– Pass &wstatus to find out why child terminated.

– Terminated process becomes a zombie until waited on.

– Terminating the parent creates orphans processes.

● Use errno to find out info
– Print error message to screen with perror().

