
25-09-06 1

Processes
fork(), exec()

© Dr. B. FraserSlides 2bCMPT 201

Based on content
created by Dr. Steve Ko

25-09-06 2

Topics

1) How can we create a new process?

2) How can we run a different program?

..

25-09-06 3

Making a New Process
fork()

25-09-06 4

Making a New Process

● Each process has its own address space:
– Changing a variable's value in one process

..

– ..

– Process can only communicate with each other through the
OS, and only if they both agree.

● Making a new process:
– Initial process (the ..) wants to

make a new process (the ..)

– Parent will call fork() to have the OS start a new process.

– fork() is a system call (syscall), as well as a POSIX function.

25-09-06 5

fork()

● fork() creates a child process that is
..

– fork() is called once, but..

1. In the initial process (parent), just as we expect

2. ..

● Analogy: It's like waking up after being cloned.
– Are you the original person?

– Are you the clone?

● fork() returns a process ID (PID):
– For the parent, ..

(or -1 on failure).

– For the child, ..

25-09-06 6

man fork()

● Checkout its return value.

25-09-06 7

Activity: fork()

● (5 mins) Write a program that:
– Calls fork() once

– Then loops calling sleep() with some timeout value.

● Hint
– Modify last day’s sleep()

example (on right).

– Get more info: man fork

– You need to write one line of code.

● Discussion
– Run it; check btop in tree mode.

There should be a new child process.

– Look at the PID in btop

– Kill both processes.

25-09-06 8

Activity: fork() Bomb!

● (5 mins) Write a fork bomb
– i.e., a program that keeps calling fork().

– DO NOT run this (yet). OK to compile it!

● Demo fork-bomb
– This might kill the container.

– Docker might also not respond.

● Why did this happen?
– Each process calls fork().

– Exponentially many processes.

– Denial of service attack by
consuming kernel resources.

By Dake - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=1662868

25-09-06 9

Understanding fork()
● Understanding fork

– We have one C program,
which clones itself with fork()

– Until we call fork(),
there is only one process.

● fork() "returns twice";
once into each process.

– The parent and the child are..

– After fork() each process
executes independently

– Both processes (and the shell!)
all share the screen, so output
gets mixed up.

int main()

{

 pid = fork();

 if (pid == ...) {

 printf(“parent”);

 } else {

 printf(“child”);

 }

}

At the start: one process

int main()

{

 pid = fork();

 if (pid == ...) {

 printf(“parent”);

 } else {

 printf(“child”);

 }

}

int main()

{

 pid = fork();

 if (pid == ...) {

 printf(“parent”)

 } else {

 printf(“child”);

 }

}

After fork(): two processes

25-09-06 10

fork() with PIDs

● (15 mins) Write a program that:
1. Print its PID and its parent's PID

● `man getpid` and `man getppid` on getting the PIDs.

2. Calls fork()

● If parent: print "parent", its PID, and the child PID

● If child: print "child", its PID, and the parent's PID.

● Hints
– This is a single program, but becomes multiple processes

– The parent and the child need to do different things.

– Use `if-else` on the return value of `fork()` to differentiate the
behaviour.

25-09-06 11

ABCD: fork()

● How many processes will have been created by running
this code (launching this program counts as 1)?

● What number will this code output?

a) 2

b) 3

c) 4

d) 7

a) 2

b) 3

c) 4

d) 7

b)a)

25-09-06 12

Bonus Activity

● Write a program that:
– Spawns 10 child processes.

– Each child finds 10 big prime numbers.

– Parent process waits 10s and exits.

● While waiting, parent prints "Still waiting..." each
second

25-09-06 13

Replace current program in Process
exec()

25-09-06 14

Purpose of exec()

● When called, exec() will:
– ..

from this process's memory

– ..

– ..

● exec() completely replaces the calling process;
it is replaced by a new program.

25-09-06 15

ABCD: exec() Idea

● What words will the following pseudo-code program output?

● What happens to rest of a program after calling exec()?
– It won't get executed; it's replaced in memory.

– Analogy:
If a process is like a body,
then exec() is a brain transplant.

a) Hi

b) Hi, Bye

c) Hi, Bye, Bye,

d) Hi, Bye, Hi, Bye,

int main()

{

 printf(“Hi\n”);

 fork();

 exec(....);

 printf(“Bye\n”);

}

25-09-06 16

man 3 exec

● Many different
exec() flavours.

25-09-06 17

exec() Flavours

● exec() family has functions like:
– execl(...), execv(...)

execlp(...), execvp(...)
execle(...), execvpe(...)

● l / v How to pass command line arguments:
– If it has an ‘l’, means pass each argument individually:

execl(“/bin/echo”, “/bin/echo”, “Yes!”, “No!”);

– If it has a ‘v’, means pass arguments together in array:
char* args[] = {“/bin/echo”, “hello”, “world”};
execv(“/bin/echo”, args);

● p Search path for the program
– With execlp() you can run “echo” and Linux will find it for you;

with execl() you need to tell Linux where to find echo.

● e Specify the environment variables as well

25-09-06 18

Subtlety on Arguments

● When a program is executed,
OS hands it some command-line arguments.

– args[0] (‘arg0’) is..

– args[1] and beyond are the other arguments.

● exec() calls take:
– What program to execute

– What arguments to pass the new process

● When calling exec() functions, you specify the arguments
– We must make these arguments start with the program name:

..

– E.g., execl(“/bin/ls”, “/bin/ls”, “/home/”, “-l”, NULL);

25-09-06 19

Activity: exec()

● (15 mins) Write a program that...
1. Creates a child process.

2. Parent:
 call any one of `exec` functions that executes `ls -a`.

3. Child:
 call any `exec` function that executes `ls -a -l -h`

● (same as `ls -alh` but spelled out,
which is necessary for `exec` functions).

● Discussion
– At end of our program, if we add: printf("%d\n", getpid())

– What will the parent print out?

– What will the child print out?

25-09-06 20

Summary

● Create a new process using fork()
– Clones current process.

– fork() returns twice:

● Parent knows it’s the parent because
return PID is non-zero (= the child’s PID)

● Child knows it’s the child because
return PID is zero

● Replace a running program with exec()
– Pass in what program you want loaded

into the current process.

– Completely replaces the process’s memory space

