Processes:.
sleep()

Based on content
created by Dr. Steve Ko

25-09-06 CMPT 201 Slides 2a © Dr. B. Fraser 1

1) What specifically is a running program?
2) Writing C code to call a syscall: sleep()
3) Using man pages

4) Fun with some C pointers

25-09-06

Pair Programming

* In lecture, we'll do lots of programming
activities!
- You and a partner will use

- Show: I

(by Code.org)

e Suggestion
— Driver typing the code

- Navigator look up the man page
- Both are creating the code!

- See I

(show 30s)

’ 25-09-06 3

Process

25-09-06 4

Process

* What is a program?
- Basically a..

— But unless you run it, it's just a file!

 What is a process?
- Basically a..
(not quite that simple; we'll learn more)

25-09-06 5

Program in Memory

CPU
Register

Cache

Main Memory
(RAM)

Solid State Drive

Hard drives

Memory Hierarchy

Slow storage

* Program (the executable) stored on disk.
— Slow data access (fetch) speed due to
distance, spinning drive, etc.

— CPU cannot access bytes
without loading them into memory.

- S0, a program must be in memory to run.

Data loaded into !

. >
main memory

Bytes in Memory:
Fast CPU access CPU

’ 25-09-06

Start Execution

e To start executing a program, the OS will:

In RAM for the program to run
- |load the machine code from the

program’s file on disk into memory. T
I
N

- make part of memory space for data
(variables, ...). More later!

— start executing the program from
memory (makes it a process!)

Areas of
program’s
memory space
25-09-06 7

Controlling a Process

* Controlling a process
- Programmers use system calls (syscalls) to control
processes.

* Some core process syscalls include:

Create a new process by cloning current one.

Replace current process with another executable.
(family of different calls, but do the same thing).

Wait until a created process finishes its work.

25-09-06 8

ABCD: Process

e \What is the difference between
a process and a program?

a) A process is a program loaded into memory and running.
b) A program is a process loaded into memory and running.
c) A process is loaded from RAM to the hard drive by the OS.
d) A program is loaded from RAM to the hard drive by the OS.

25-09-06 9

Coding &
Process Activity

25-09-06 10

Ready to Code

 Open Two Terminals (tabs or windows)
- A terminal for Coding:

 Launch the CMPT 201 container:
docker start -ai cmpt201

 Make a folder for our work
mkdir -p ~/lecture/02-forkexecwait

- A terminal for 'man' page:

e connect to the already running container:
docker exec -it cmpt201 zsh --login

* Run
man 3 printf

If not yet downloaded docker image, first run:
docker create -it --name cmpt201 ghcr.io/sfu-cmpt-201/base # if needed

25-09-06 11

Activity: Hello C World!

* Create a C program:

cd ~/lecture/02-forkexecwait/
nvim hello.c

 Compile
“clang hello.c’

— This builds executable a.out; run it:
Ja.out

- Set executable’s name:
clang hello.c -o hello 1
° (53 rT]ir]S;) ’ ?nt main()
You do it now! > |

#include <stdio._h>

printf("Hello world!\n");

’25—09—06

12

Activity: sleep()

* (5 mins)
Write a program that keeps calling ‘sleep()” with some

timeout value.

— Check the man page for sleep():
$ man 3 sleep

(Without the 3, it will give you the Linux sleep command)

* In a 3"terminal, run btop
— Connect to running container using docker exec...’

— btop Is a good tool to visualize parent/child processes

25-09-06 13

sleep() Solution

e See process information: btop
- Use tree view (press e)

— Each process has a parent
(except init and kthreadd,;
not shown in containers).

— Our container’s zsh runs
a.out

proc ilter Der-core everse | tre cpu lazy
User: MemB Cpu%

proc ilter per-core everse tre
Tree: User: MemB
root 14M 0.0 [-]-128 zsh cmpt+ 6.8M ...

0.0

L 694 btop cmpt+ 6.2M . ..

— 66 zsh cmpt+ 6.8M
— 1 zsh cmpt+ 9.3M

mtoolsad

On Linux shows init In container, no init
25-09-06 14

ABCD: Docker

* Which command connects to
an already running Docker container?

« Which command downloads the Docker container?

e Which command launches the Docker container?

a) docker start —-ai cmpt201

b) docker exec -it cmpt201 zsh --login

c) docker git clone github.com/sfu-cmpt-201/base

d) docker create -it —--name cmpt201 ghcr.io/sfu-cmpt-201/base

25-09-06 15

Reading a
man page

25-09-06 16

Man Page

 Reading a man page
— our primary way to learn functions/system calls for systems
programming.

- |t takes practice to effectively read a man page!

e The command is
man <da-thing>

- e.g.,, manls, mancd

e Section Numbers

- Most relevant sections for CMPT 201.:
- man 1: General commands e.g., manlls
- man 2: System calls e.g., man 2 fork’

- man 3: C standard library functions e.g., man 3 printf’
25-09-06 17

Learning a Syscall

 Problem
- | know a syscall;
how do | use it?

* Steps Overview
1) Is this what | want?

2)How do | call it?
3) What does it give me?

4) How can it go wrong?
(errno, feature test)

atoi(3) Library Functions Manual atoi(3)

AME
atoi, atol, atoll - convert a string to an integer

LIBRARY

Standard C library (libc, -1c)
SYNOPSIS

#include <stdlib.h>

int atoi(const char *nptr);
long atol{const char *nptr);
long long atoll(const char *nptr);

Feature Test Macro Requirements for glibc (see fea-
ture_test_macros(7)):

atoll():
_IS0C99_SOURCE
|| 7/* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
The atoi() function converts the initial portion of the
string pointed to by nptr to int. The behavior is the
same as

strtol (nptr, NULL, 1@},
except that atoi() does not detect errors.
The atol() and atoll{) functions behave the same as

atoi(), except that they convert the initial portion of
the string to their return type of long or long long.

25-09-06

RETURN VALUE
The converted value or @ on error.

Learning a Syscall

1) Is this what | want?
— Read Description section

(You'll need this skill!)

2) How do I call it?
- Read Synopsis (prototype)

— Check header files &
return type

— Check arguments
(in and out)

3) What does it give me?
- Read Return Value section

- Pay attention to output
parameters (pointers)!

25-09-06

atoi(3) Library Functions Manual atoi(3)

AME

atoi, atol, atoll - convert a string to an integer
LIBRARY
Standard € library (libc, -1c}

SYNOPSIS
#include <stdlib.h=>

int atoi(const char *nptr);
long atol(const char *nptr);
long long atoll(const char *nptr);

Feature Test Macro
ture_test_macros(7)):

Requirements for glibc (see fea-

atoll():
I50C99 SOURCE
|| 7/* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
The atoi() function converts the initial portion of the
string pointed to by nptr to int. The behavior is the
same as

strtol (nptr, NULL, 1@);
except that atoi() does not detect errors.
The atol{) and atoll{) functions behave the same as
atoi(), except that they convert the initial portion of

the string to their return type of long or long long.

RETURN VALUE
The converted value or @ on error.

atoi(3) Library Functions Manual atoi(3)

NAME

Learning a Syscall

atoi, atol, atoll - convert a string to an integer

LIBRARY

4) HOW Can It go Wrong’) Standard € library (libc, -1c}
(errno, feature test)
. SYNOPSIS
— What errors possible? #include <stdlib.h>
Read Errors (more later) infi-wioiiconst chor Smizis

long atol(const char *nptr);

- DO you n66d {0 a long long atoll(const char *nptr);
feature teSt') Feature Test Macro Reqguirements for glibc (see fea-

ture_test_macros(7)):
E.g., man 3 nanosleep o110,
must define 150C99_ SOURCE
POSIX C SOURCE || /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

nanosleep(): DESCRIPTION
POSIX C SOURCE >= 1993@9L The atoi() function converts the initial portion of the

string pointed to by nptr to int. The behavior is the
same as

|[ERRORS strtol (nptr, NULL, 1@);
EFAULT Problem with copying information from user space.

EINTR The pause has been interrupted by a signal that was except that atoi() does not detect errors.

delivered to the thread (see signal(7)). The re-
maining sleep time has been written into *rem so The atol{) and atoll{) functions behave the same as
Ihat-the thrend con easily 2oll ssnosleapp) .again atoi(), except that they convert the initial portion of

and continue with the pause.

the string to their return type of long or long long.

EINVAL The value in the tv nsec field was not in the range

[@, 999999999] or tv sec was negative. T RETURN VALUE
25-09-vu The converted value or @ on error.

ABCD: Review C Pointers

o B N T o' T R o T 5 R O W R N M

#include <stdio.h>
#tinclude <stdlib_h>

int
I
L

int

make abs get product(int *pA, int *pB)

*pA = abs(*pA);
*nB = abs(*pB);
return *pA * #pB;

main()
int w = -4;
int h = 5;

int area = make_abs get product(&w, &h);
printf("%d x %d = %d\n", w, h, area);

* What does this output?

a) -4 x 5 = -20
b) 4 x 5 = 20
c) 4 x 5 = -20
d) -4 x 5 = 20

(Formatting cleaned up)

25-09-06

21

e Note the: char** x

- XIS a..

- Used for
output parameters

e Use of **

- Calling code
passes in..

- Function sets
where
that pointer points.

25-09-06

o L ka

[}]

SO

L1585 T S o T B o R

[e T T O T N e
=@ oD 00 =] Oh

Pd Ped D M
{60 i I ™S TN R 5

[}]

[
|

Review C Pointer

AR

AT

S

#include <stdio.h>

#include <stdbool.h>

iy '
#H1nc

clude <string.h>

#include <ctype.h>

sy Y
|

(o

int

=

ool find_first_digit(char* data, int n, char** ppdigit)

for (int 1 =08; 1 < n; 1++) {
it (isdigit(datali])) {

*ppdigit = Gdata[i];
return true;
!

return false;

=2

main()

char* data = "I wa5% h3r3!\n";
char* pfirst digit = NULL;
if (find first _digit(data, strlen(data), &pfirst digit)) {
printf("Found digit: %c\n", *pfirst digit);
t else {
printf("Found no digits.\n");

a
H

 Ssummary

* Processes are programs executing from memory (RAM)
— Each process has its own Memory Space

* C Programming
- Use man pages to lookup functions

- Pointers and pointers-to-pointers used as output
parameters

 Development Ideas
- Use multiple terminal tabs/windows

- Code a little at a time

sleep() puts function to sleep

25-09-06 23

