

Topics

1) How can each process have its own memory space?
2)How can the OS allocate memory to processes?
3)What if we run out of memory?

2/3/2026

F
A

Context:
What is the problem we are trying to solve?

Detalls

It is also a good example that shows

(more depth than we require)
= The Abstraction: Address Spaces
https://pages.cs.wisc.edu/~remzi/OSTEP/vm-intro.pdf

— Mechanism: Address Translation
https://pages.cs.wisc.edu/~remzi/OSTEP/vm-mechanism.pdf

- Paging: Introduction
https://pages.cs.wisc.edu/~remzi/OSTEP/vm-paging.pdf

- Segmentation
https://pages.cs.wisc.edu/~remzi/OSTE P/vm-segmentation.pdf

2/3/2026

https://pages.cs.wisc.edu/~remzi/OSTEP/vm-intro.pdf
https://pages.cs.wisc.edu/~remzi/OSTEP/vm-intro.pdf
https://pages.cs.wisc.edu/~remzi/OSTEP/vm-intro.pdf
https://pages.cs.wisc.edu/~remzi/OSTEP/vm-mechanism.pdf
https://pages.cs.wisc.edu/~remzi/OSTEP/vm-mechanism.pdf
https://pages.cs.wisc.edu/~remzi/OSTEP/vm-mechanism.pdf
https://pages.cs.wisc.edu/~remzi/OSTEP/vm-paging.pdf
https://pages.cs.wisc.edu/~remzi/OSTEP/vm-paging.pdf
https://pages.cs.wisc.edu/~remzi/OSTEP/vm-paging.pdf
https://pages.cs.wisc.edu/~remzi/OSTEP/vm-segmentation.pdf
https://pages.cs.wisc.edu/~remzi/OSTEP/vm-segmentation.pdf
https://pages.cs.wisc.edu/~remzi/OSTEP/vm-segmentation.pdf

Memory Layout in the Early Days

Memory

OS and program. oS

~-Could run only a single program.

-However, there were many users who wanted
to run their own programs!

~Users could not share the machine, lead to Process
low utilization.

2/3/2026

Early Memory Sharing Attempt

~-Each process could only use a fixed (small) size
memory region.

a “bad” pointer in one process could access
another process's memory.

2/3/2026

Memory

Process A

Process C

Process D

-

Understanding Memory

Address-Based Memory Operations

Code

inti=0;
-Most instruction reads from or write to memory. int *ptr = &i;

inty=i+2;

Memory
-Unlike a hard-drive (disk) which spins like a record /

inty
CD / DVD:

. 0x3672
Disks cannot access all data equally fast, but are int *ptr
bigger!

int i

2/3/2026

Locality

~-Mostly accessed sequentially
-Loops and 'if' (branches) jump around only a little usually.

. Access small parts of data at once
-Variables are often accessed repeatedly (a loop), or same data
structure accessed over and over.

-recently used data is likely to be reused (i.€., loops)

-the next data you need is likely nearby previous data you used.
(e.g., an array / struct)

2/3/2026

Understanding Memory Solutions

-Programs really work on memory.

-Programs access the same data over and over again
(temporal locality)

-Programs access data nearby to previously accessed data
(spacial locality)

2/3/2026

10

ABCD: Locality

« Assume a program has just
accessed memory locations 6 and 12.
-Spacial locality suggests we might soon access?
(a)0, 3,9
(b)6, 12

(c)5,7, 11,13

(b)6, 12
(c)5,7, 11, 13

2/3/2026

[—
[—

Solution:
Virtual Memory

Memory Abstraction

"All problems in computer science can be solved by another level of

indirection, except for the problem of too many levels of indirection."
-- David Wheeler

(i)..
(ii)..
Simply put,..

~virtual address space and address translation.

~Virtual memory is a good example that demonstrates the power of

abstractions.
2/3/2026

13

Virtual Address Space

Kemel [0z
e Space

N Stack
~Virtual memory size is Not to

scale!

-Virtual memory is a memory abstraction (imaginary EYEuY
space) that the program & programmer operates in. Mapping

-The OS + hardware build us this imaginary space.

.

Heap
-User-level processes works with BSS
virtual addresses.
-Kernel-level components can deal with both O
virtual and physical addresses. Virtual Physical
Address Memory
Space

2/3/2026 14

« Imagine a process as a room
-It’s virtual memory space is the surface of the walls.

-There are no real walls; they are an illusion:

Room Analogy (cont)

~Virtual memory space is the walls:
Pointers can point to the wall, can read/write on wall.

~Walls have 2°* locations; much bigger than physical memory
. memory panels

-Operations on areas with physical panels work;
-Operations outside of those areas fail: page-faults
- , reading from address 0x100 is virtual memory address.

.Program doesn’t know (or care) which physical "panel" of

memory we are writing to. \‘,
« Aphysical "panel” is called either a page frame or /"a:
segment

2/3/2026 16

Process Virtual Memory

-0 to 2%4-1 (or 232-1).

. Each address in a virtual address space is a virtual address
(physical address points to a physical memory location)

Process A’s Process B’s Process C’s
address space address space address space

Kernel Kernel Kernel Virtual Address Max
OxFFF..F

Stack Stack Stack

Memory
Mapping

Memory
Mapping

Memory
Mapping

Heap Heap Heap

BS

Data
Text

BS BS
Data

Text

- - -
| Daa | | Daa | | Data |
| Text | Text | _ Text

Text Virtual Address 0

2/3/2026

17

Benefits of Virtual Memory

-Don't have 16EB per process of physical memory!

-OS can swap to a file on disk areas that have not recently been
used

-Makes physical memory available for other processes.
This file is called the..

2/3/2026

18

Room Analogy

-We can run out of physical memory panels for our room

-So take an "older" panel, save it to disk, and then re-use it in a new
place.

-If needed later, we take another physical memory panel and reload
the swapped out data from disk

~-Map virtual memory to the correct physical memory location.
-Program never knows the difference!

-OS manages mapping virtual address to physical memory panels
-Panels are shared across all processes

2/3/2026 19

-

Address Translation

Address Translation

A virtual addresses
physical address
~Must translate between them!

~-Each page is
-Kernel controls the mapping

-Kernel configures hardware to translate virtual addresses into
physical addresses

2/3/2026

21

Address Translation

int *ptr;
*ptr = 10;

1.Figure out which virtual memory page *ptr is on.
2.Figure out which physical frame it maps to

3.Redirects the access to the correct physical memory frame and
address within it.

2/3/2026

22

Address Translation

Process A's
Virtual Address Space

NI

2/3/2026

Physical Memory
Frames

« OS maps virtual
pages to physical
frames.

Process B’s
Virtual Address Space

]

23

Address Translation

-How do we divide our virtual address space
into smaller regions ("panels" in our analogy)?

2/3/2026

24

Paging

Pages

-4 KB is a popular size but modern OSs have bigger pages (¢.9., 4
MB) as well.

-If we have 16KB virtual address space and page size 4K
~-How many pages? ..

-Here are 2 process, each with its own virtual address space. Page
numbers are in binary:

Process A's Process B’s
Address Space Address Space

page 11 page 11

page 10 page 10

page 01

page 01

!
i

page 00 page 00

2/3/2026

26

Page Frames

~-Each is the same size as pages.

if we have 8KB of memory with 4KB page size = 2 frames
(#'s in binary)

Physical Memory
Frames

page frame 01

page frame 00

2/3/2026

27

Address Translation

4 pages, each of 16 bytes.
-4 pages need..

-16 bytes need..

-6-bit virtual address space divided into
2-bit page numbers and 4-bit offsets

-Address 100101 is divided into
page number 10 and offset 0101.

-Address 000010 is divided into
page number 00 and offset 0010.

2/3/2026

28

ABCD: Address Translation

—each page is 32 bytes
~-have 8 pages

What does the memory address 10011010b mean?

(a) Page 10011b, Offset 010b
(b) Page 100b, Offset 11010b

(c) Page 010b, Offset 10011b
(d)Page 11010b, Offset 100b

2/3/2026

PAY

Page Table

-The offset does not change.

. page table
-Maps page number (virtual) to
a page frame number (physical).

Page Table Process A’s
Address Space

Physical Memory

Page Page Frame
Number Number page 11 Frames
00 01 page 10 page frame 01
10 00 page 01 page frame 00

page 00

2/3/2026

Address Translation Example

Convert virtual address 101011b to physical address
~Assume 16 byte pages.
So, offset is..

~Address is 6 bits therefore

-Page: 10b .

Offset: 1011b (unchanged)
-So physical memory 001011b :
Process A's
Page Table Address Space Physical Memory
Page Page Frame page 11 Frames
Number Number page 10 page frame 01
00 01 page 01 page frame 00
10 00 page 00

2/3/2026

Number of Pages

-OS only maps a page to a frame when needed (more later).

-OS configures the page table
-HW looks mappings at runtime

2/3/2026

32

Page Table Size

-If page numbers use n bits,

the maximum possible number of pages is 2".

-If offsets use m bits,
the maximum possible page size is 2™.

-Page size 4 KB on a 32-bit architecture.
-m =..
-n =..

~Therefore can have 22° pages.
This is 1M pages!

2/3/2026

33

ABCD: Address Translation

. Given the page table below, what is the physical address for
(virtual) address 0010 1011 1101 1100b?

Page Table
(a)<000001, 1111011100> Page Page Frame
Number Number
(b)<001010, 1111011100> 00001 S0n 010
(c)<111010, 1111011100> 11010 000011
(d)<000101, 1111011100> 01001 000111

001010 000101

2/3/2026

Segmentation

Segmentation

« Segmentation

-Memory is divided it sections
~-Each section is located in physical memory

-Virtual memory addresses are translated to physical memory
addresses.

-E.g., text segment, data segment, stack segment, heap segment, ...

2/3/2026

36

Segmentation Address translation

~-Must still translate virtual memory address to physical memory
address (beyond scope of this course)

. Modern OSs typically use paging rather than segmentation.

2/3/2026

37

Segmentation and External Fragmentation

« External Fragmentation (recall) Physical Memory
When free space is broken up into
many different places. Used by a segment

-Over time, with segmentation, free space gets

: : Free (24KB)
broken up into different places.

Used by a segment

. i _ Used by a segment
-Since segments are of different sizes,

no one free block might be big enough, even if

F 32KB
we have enough total free memory. ree (32KB)

Used by a segment

-Unable to allocate 40KB segment Free (32KB)

2/3/2026 38

Paging and External Fragmentation

-We only have one page size,
so when you need a page..

-Since pages are handed out at a fixed size,
there is very likely to be wasted space at the end of a page.

-1t happens with paging.
-Combat it by keeping page size small.

Internal
Single I Fragmentation:
page | Wasted space

2/3/2026

39

-

Running out of Memory

Out of Memory

-Limited physical memory but virtual memory space is vast!

-Can't bring in all virtual pages to physical memory.
What do we do?

-Demand paging:

-Swapping:
if we don't have a free page frame, kick out a page already in
memory to disk and bring in the new page.

-Swap space:
disk space dedicated to store swapped-out pages.

« How do we decide which memory page to swap out?

We need a page replacement algorithm
2/3/2026

41

Demand Paging

-Insight: ..

-This is based on locality of access.

~-Temporal locality: if a program accesses a memory location, it is likely
that it's going to access it again in the near future.

~Spatial locality: if a program accesses a memory location, it is likely that
it's going to access other memory locations nearby.

-when a memory location is accessed, it brings in the region that the
location belongs to, not just the specific memory location.

. temporal locality

2/3/2026 42

Page Replacement Algorithms

-when a memory location is accessed but

~-we need to bring in the page into a memory frame.

-When the memory is full (i.e., all page frames are used) and we
need to load a new page,

2/3/2026

43

Optimal Page Replacement Algorithm

-This assumes that we know the future (which is impossible). Thus,
this is only a theoretical exercise.

-Page replacement algorithms try to approximate this as much as
possible.

2/3/2026

44

Optimal Page Replacement Example

-Memory has 4 page frames.

-Memory page access order (by page number):
1,2,3,4,1,2,5,1,2,3,4,5

Page Faults:

1, 2, 3,

1,2,3 are all
never used
again

Page Access: 1,

H \.-h

Page Page 4 is used A
- lastin the future, ST Page 1
so replace it. Replaced Replaced

2/3/2026 45

FIFO (First In, First Out)

-Keeps track of when a page was brought in to memory.

Page Faults:

Page Access: 1,

Page
Replacement:

« 10 page faults!

« This is simple but does not consider useful properties like locality.

2/3/2026

46

LRU (Least Recently Used)

-1t tries to approximate the optimal algorithm.
-1t tries to infer the future based on past.

Page Faults:
3,

Page Access: 1,

Page
Replacement:

. 8 page faults
« Tracking access time is not simple to implement. Approximate it?

2/3/2026

47

ABCD: LRU Paging

-4 page frames
-Uses LRU page replacement algorithm

How many page faults are there for the following sequence of
page accesses?

1, 2, 3, 4, 5, 2, 4, 5, 1, 5

* * * * * (1) * (3)

(a) 2 page faults
(b) 5 page faults

(c) 6 page faults
page faults

2/3/2026

48

Second-Chance

~Each page has a reference bit (ref bit), initially = 0

-We maintain a moving pointer to the next (candidate) “victim”.

—Else

2/3/2026

check ref bit of victim:

Bit
0.
I

«Clear ref bit to 0. 1

.Leave page in memory 1 L

«Move pointer to next page (wrapping around)

-Repeat till a victim is found.
49

Second Chance Example

~Assume we have triggered a page fault.
-No empty pages, so must replace.
~Let’s find the victim page to replace.

Initial State Clear flag; Clear flag; Found
Move on Move on Victim Page!

Ref. | Pages Ref.| Pages
B|t Bit

Bit Bit
0| .
_ 0| ..
0
 mEi

. R

2/3/2026

ABCD: Second Chance

. Using second chance page replacement algorithm, which

2/3/2026

page will be the next victim?

Ref. Pages
Bit

| 0 | Page 101

(a) Page 110b
(b) Page 111b

(c) Page 101b
(d)Page 001b

51

Thrashing

Thrashing

. |If a process access a large amount of memory,
OS could keep needing to bring new pages into memory

An process that jumps through a huge amount of memory, reading
one value every 4K (once per page).

« Thrashing:

- a process is too busy swapping in and out pages
and not really executing its program on the CPU.

2/3/2026

53

Summary

-Process works only in the virtual memory space.
-OS can flexibly share memory between processes.
~-Gives process memory isolation.

—-Converting (virtual) address to physical address.

-Virtual memory broken up into identical size pages.

-Physical memory broken up into page frames (“frames”™).

-Like paging, but different size regions (segments).

—Optimal, FIFO, LRU, Second Chance

2/3/2026

54

	Slide 1
	Slide 2: Topics
	Slide 3
	Slide 4: Details
	Slide 5: Memory Layout in the Early Days
	Slide 6: Early Memory Sharing Attempt
	Slide 7
	Slide 8: Address-Based Memory Operations
	Slide 9: Locality
	Slide 10: Understanding Memory Solutions
	Slide 11: ABCD: Locality
	Slide 12
	Slide 13: Memory Abstraction
	Slide 14: Virtual Address Space
	Slide 15: Room Analogy
	Slide 16: Room Analogy (cont)
	Slide 17: Process Virtual Memory
	Slide 18: Benefits of Virtual Memory
	Slide 19: Room Analogy
	Slide 20
	Slide 21: Address Translation
	Slide 22: Address Translation
	Slide 23: Address Translation
	Slide 24: Address Translation
	Slide 25
	Slide 26: Pages
	Slide 27: Page Frames
	Slide 28: Address Translation
	Slide 29: ABCD: Address Translation
	Slide 30: Page Table
	Slide 31: Address Translation Example
	Slide 32: Number of Pages
	Slide 33: Page Table Size
	Slide 34: ABCD: Address Translation
	Slide 35
	Slide 36: Segmentation
	Slide 37: Segmentation Address translation
	Slide 38: Segmentation and External Fragmentation
	Slide 39: Paging and External Fragmentation
	Slide 40
	Slide 41: Out of Memory
	Slide 42: Demand Paging
	Slide 43: Page Replacement Algorithms
	Slide 44: Optimal Page Replacement Algorithm
	Slide 45: Optimal Page Replacement Example
	Slide 46: FIFO (First In, First Out)
	Slide 47: LRU (Least Recently Used)
	Slide 48: ABCD: LRU Paging
	Slide 49: Second-Chance
	Slide 50: Second Chance Example
	Slide 51: ABCD: Second Chance
	Slide 52
	Slide 53: Thrashing
	Slide 54: Summary

