
Virtual Memory

Slides 6CMPT 201 12/3/2026

Instructor: Linyi Li

Slides adapted from Dr. B. Fraser

Topics

1) How can each process have its own memory space?

2) How can the OS allocate memory to processes?

3) What if we run out of memory?

22/3/2026

Context:

What is the problem we are trying to solve?

32/3/2026

Details

⚫ Virtual memory is one of the most important OS concepts.
−It is also a good example that shows
..

⚫ Can find more info in OSTEP book
(more depth than we require)

−Chapter 13 The Abstraction: Address Spaces
https://pages.cs.wisc.edu/~remzi/OSTEP/vm-intro.pdf

−Chapter 15 Mechanism: Address Translation
https://pages.cs.wisc.edu/~remzi/OSTEP/vm-mechanism.pdf

−Chapter 18 Paging: Introduction

https://pages.cs.wisc.edu/~remzi/OSTEP/vm-paging.pdf

−Chapter 16 Segmentation

https://pages.cs.wisc.edu/~remzi/OSTEP/vm-segmentation.pdf

42/3/2026

https://pages.cs.wisc.edu/~remzi/OSTEP/vm-intro.pdf
https://pages.cs.wisc.edu/~remzi/OSTEP/vm-intro.pdf
https://pages.cs.wisc.edu/~remzi/OSTEP/vm-intro.pdf
https://pages.cs.wisc.edu/~remzi/OSTEP/vm-mechanism.pdf
https://pages.cs.wisc.edu/~remzi/OSTEP/vm-mechanism.pdf
https://pages.cs.wisc.edu/~remzi/OSTEP/vm-mechanism.pdf
https://pages.cs.wisc.edu/~remzi/OSTEP/vm-paging.pdf
https://pages.cs.wisc.edu/~remzi/OSTEP/vm-paging.pdf
https://pages.cs.wisc.edu/~remzi/OSTEP/vm-paging.pdf
https://pages.cs.wisc.edu/~remzi/OSTEP/vm-segmentation.pdf
https://pages.cs.wisc.edu/~remzi/OSTEP/vm-segmentation.pdf
https://pages.cs.wisc.edu/~remzi/OSTEP/vm-segmentation.pdf

Memory Layout in the Early Days

⚫ The entire memory was divided into two:
OS and program.

−Could run only a single program.

−However, there were many users who wanted

to run their own programs!

−Users could not share the machine, lead to

low utilization.

Memory

OS

Process

52/3/2026

Early Memory Sharing Attempt

⚫ Memory was divided into
..

⚫ Could run multiple processes:
..

⚫ Problems
−Each process could only use a fixed (small) size

memory region.

−..

a “bad” pointer in one process could access
another process's memory.

Memory

OS

Process A

Process C

Process D

Free

62/3/2026

Understanding Memory

72/3/2026

Address-Based Memory Operations

⚫ Variables are a convenience for programmers:
−..

−Most instruction reads from or write to memory.

⚫ Random Access Memory (RAM)
−..

−Unlike a hard-drive (disk) which spins like a record /

CD / DVD:

Disks cannot access all data equally fast, but are
bigger!

int i = 0;
int *ptr = &i;
int y = i + 2;

int y

int *ptr

int i 0

0x3672

052A...

2

Code

Memory

82/3/2026

Locality
⚫ At any given moment, a program is likely to be accessing

..

⚫ Code:
−Mostly accessed sequentially

−Loops and 'if' (branches) jump around only a little usually.

⚫ Data: Access small parts of data at once
−Variables are often accessed repeatedly (a loop), or same data
structure accessed over and over.

⚫ ..
−recently used data is likely to be reused (i.e., loops)

⚫ ..
−the next data you need is likely nearby previous data you used.

(e.g., an array / struct)

92/3/2026

Understanding Memory Solutions

⚫ Fundamental Properties of Memory Use
−Programs really work on memory.

−Programs access the same data over and over again

(temporal locality)

−Programs access data nearby to previously accessed data
(spacial locality)

⚫ Can we use these to design how to share memory?

102/3/2026

ABCD: Locality

⚫ Assume a program has just
accessed memory locations 6 and 12.

−Spacial locality suggests we might soon access?

−Temporal locality suggests we might soon access?

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

(a) 0, 3, 9

(b) 6, 12

(c) 5, 7, 11, 13

(d) 4, 8, 10, 14

(a) 0, 3, 9

(b) 6, 12

(c) 5, 7, 11, 13

(d) 4, 8, 10, 14

112/3/2026

Solution:

Virtual Memory

122/3/2026

Memory Abstraction

"All problems in computer science can be solved by another level of

indirection, except for the problem of too many levels of indirection."
-- David Wheeler

⚫ Virtual memory is a mechanism to enable:
(i)..

(ii)..

⚫ Simply put,..

⚫ Virtual memory consists of:
−virtual address space and address translation.

−Virtual memory is a good example that demonstrates the power of

abstractions.
132/3/2026

Virtual Address Space

⚫ All memory discussed so far
..

−Virtual memory size is

..

−Virtual memory is a memory abstraction (imaginary

space) that the program & programmer operates in.

−The OS + hardware build us this imaginary space.

⚫ Virtual vs Physical
−User-level processes works with

virtual addresses.

−Kernel-level components can deal with both

virtual and physical addresses.

Text

Data

BSS

Heap

Kernel

Space

Memory

Mapping

Stack

Virtual

Address

Space

0

0xFFF..F

Physical

Memory

Not to

scale!

142/3/2026

Room Analogy

⚫ Imagine a process as a room
−It’s virtual memory space is the surface of the walls.

−There are no real walls; they are an illusion:

..

152/3/2026

Room Analogy (cont)

⚫ Imagine a process as a room
−Virtual memory space is the walls:

Pointers can point to the wall, can read/write on wall.

−Walls have 264 locations; much bigger than physical memory

⚫ OS + hardware only put "physical" memory panels behind a few
areas of the wall.

−Operations on areas with physical panels work;

−Operations outside of those areas fail: page-faults

−E.g., reading from address 0x100 is virtual memory address.

⚫Program doesn’t know (or care) which physical "panel" of

memory we are writing to.

⚫ A physical "panel" is called either a page frame or
segment

162/3/2026

Process Virtual Memory

⚫ Each process..
−0 to 264-1 (or 232-1).

⚫ Each address in a virtual address space is a virtual address
(physical address points to a physical memory location)

Text

Data

BSS

Heap

Kernel

Memory

Mapping

Stack

Process A’s

address space

Text

Data

BSS

Heap

Kernel

Memory

Mapping

Stack

Process B’s

address space

Text

Data

BSS

Heap

Kernel

Memory

Mapping

Stack

Process C’s

address space

Virtual Address Max
0xFFF..F

Virtual Address 0

172/3/2026

Benefits of Virtual Memory

⚫ A process only sees its own address space,
−i.e., ..

⚫ Temporal & spacial locality mean
..

−Don't have 16EB per process of physical memory!

−OS can swap to a file on disk areas that have not recently been

used

⚫Makes physical memory available for other processes.

This file is called the..

182/3/2026

Room Analogy

⚫ Out of Memory
−We can run out of physical memory panels for our room

−So take an "older" panel, save it to disk, and then re-use it in a new

place.

⚫ If Needed Again
−If needed later, we take another physical memory panel and reload

the swapped out data from disk

−Map virtual memory to the correct physical memory location.

−Program never knows the difference!

⚫ Works across multiple processes
−OS manages mapping virtual address to physical memory panels

−Panels are shared across all processes

192/3/2026

Address Translation

202/3/2026

Address Translation

⚫ Process knows virtual addresses;
hardware needs physical address

−Must translate between them!

⚫ Virtual Memory is..
−Each page is

..

−Kernel controls the mapping

−Kernel configures hardware to translate virtual addresses into

physical addresses

212/3/2026

Address Translation

⚫ Consider a memory operation like:
int *ptr;
*ptr = 10;

⚫ Steps in translation:
1.Figure out which virtual memory page *ptr is on.

2.Figure out which physical frame it maps to

3.Redirects the access to the correct physical memory frame and

address within it.

222/3/2026

Address Translation

Process A’s

Virtual Address Space

Process B’s

Virtual Address Space

Physical Memory

Frames

⚫ OS maps virtual
pages to physical
frames.

232/3/2026

Address Translation

⚫ Approaches to Mapping "Panels' to Memory
−How do we divide our virtual address space

into smaller regions ("panels" in our analogy)?

242/3/2026

Paging

252/3/2026

Pages

⚫ ..
−4 KB is a popular size but modern OSs have bigger pages (e.g., 4
MB) as well.

⚫ Example
−If we have 16KB virtual address space and page size 4K

−How many pages? ..

−Here are 2 process, each with its own virtual address space. Page

numbers are in binary:

page 11

page 10

page 01

page 00

Process A’s

Address Space

page 11

page 10

page 01

page 00

Process B’s

Address Space

262/3/2026

Page Frames

⚫ Physical memory divided into
..

−Each is the same size as pages.

⚫ Example:
if we have 8KB of memory with 4KB page size = 2 frames
(#'s in binary)

page frame 01

page frame 00

Physical Memory

Frames

272/3/2026

Address Translation

⚫ A virtual address is divided into two parts:
−..

⚫ Example:
4 pages, each of 16 bytes.

−4 pages need..

−16 bytes need..

−6-bit virtual address space divided into

2-bit page numbers and 4-bit offsets

⚫Address 100101 is divided into

page number 10 and offset 0101.

⚫Address 000010 is divided into

page number 00 and offset 0010.

282/3/2026

ABCD: Address Translation

⚫ Consider a computer where
−each page is 32 bytes

−have 8 pages

What does the memory address 10011010b mean?

(a) Page 10011b, Offset 010b

(b) Page 100b, Offset 11010b

(c) Page 010b, Offset 10011b

(d) Page 11010b, Offset 100b

292/3/2026

Page Table

⚫ When a process accesses a (virtual) address,
..

−The offset does not change.

⚫ Kernel maintains a page table per process.
−Maps page number (virtual) to

a page frame number (physical).

page frame 01

page frame 00

Physical Memory

Framespage 11

page 10

page 01

page 00

Process A’s

Address Space
Page

Number

Page Frame

Number

00 01

10 00

Page Table

302/3/2026

Address Translation Example

⚫ Example:
Convert virtual address 101011b to physical address

−Assume 16 byte pages.

So, offset is..

−Address is 6 bits therefore

..

−Page: 10b ..

Offset: 1011b (unchanged)

−So physical memory 001011b

page frame 01

page frame 00

Physical Memory

Framespage 11

page 10

page 01

page 00

Process A’s

Address Space

Page

Number

Page Frame

Number

00 01

10 00

Page Table

312/3/2026

Number of Pages

⚫ There are vastly more (virtual) pages
than (physical) page frames.

−..

−OS only maps a page to a frame when needed (more later).

⚫ Hardware supports converting pointers from virtual to
physical addresses

−OS configures the page table

−HW looks mappings at runtime

322/3/2026

Page Table Size

⚫ Page Table Size
−If page numbers use n bits,
the maximum possible number of pages is 2n.

−If offsets use m bits,
the maximum possible page size is 2m.

⚫ For example,
−Page size 4 KB on a 32-bit architecture.

−m =..

−n =..

−Therefore can have 220 pages.

This is 1M pages!

332/3/2026

ABCD: Address Translation

⚫ Given the page table below, what is the physical address for
(virtual) address 0010 1011 1101 1100b?

(a)<000001, 1111011100>

(b)<001010, 1111011100>

(c)<111010, 1111011100>

(d)<000101, 1111011100>

Page

Number

Page Frame

Number

000001 001010

111010 000011

101001 000111

001010 000101

Page Table

342/3/2026

Segmentation

352/3/2026

Segmentation

⚫ Segmentation is another solution
..

⚫ Segmentation is similar to paging:
−Memory is divided it sections

−Each section is located in physical memory

−Virtual memory addresses are translated to physical memory

addresses.

⚫ Segmentation is different because:
−..

−E.g., text segment, data segment, stack segment, heap segment, ...

362/3/2026

Segmentation Address translation

⚫ Segmentation Address translation
−Must still translate virtual memory address to physical memory
address (beyond scope of this course)

⚫ Modern OSs typically use paging rather than segmentation.

372/3/2026

Segmentation and External Fragmentation

⚫ External Fragmentation (recall)
When free space is broken up into
many different places.

−Over time, with segmentation, free space gets
broken up into different places.

−..

−Since segments are of different sizes,

no one free block might be big enough, even if

we have enough total free memory.

⚫ Example:
−Unable to allocate 40KB segment

Used by a segment

Free (32KB)

Used by a segment

Used by a segment

Used by a segment

Free (32KB)

Free (24KB)

Physical Memory

382/3/2026

Paging and External Fragmentation

⚫ ..

−We only have one page size,
so when you need a page..

⚫ Internal Fragmentation
−Since pages are handed out at a fixed size,
there is very likely to be wasted space at the end of a page.

−It happens with paging.

−Combat it by keeping page size small.

Single

page
Data inside page

Internal

Fragmentation:

Wasted space

392/3/2026

Running out of Memory

402/3/2026

Out of Memory
⚫ Out of memory
−Limited physical memory but virtual memory space is vast!

−Can't bring in all virtual pages to physical memory.

What do we do?

⚫ Demand paging & swapping
−Demand paging:

..

−Swapping:
if we don't have a free page frame, kick out a page already in

memory to disk and bring in the new page.

−Swap space:

disk space dedicated to store swapped-out pages.

⚫ How do we decide which memory page to swap out?
We need a page replacement algorithm

412/3/2026

Demand Paging
⚫ Why does demand paging work?
−Insight: ..

−This is based on locality of access.

⚫ Recall:
−Temporal locality: if a program accesses a memory location, it is likely

that it's going to access it again in the near future.

−Spatial locality: if a program accesses a memory location, it is likely that

it's going to access other memory locations nearby.

⚫ ..
−when a memory location is accessed, it brings in the region that the

location belongs to, not just the specific memory location.

⚫ Demand paging & swapping leverage temporal locality:

−..
422/3/2026

Page Replacement Algorithms

⚫ Page Fault
−when a memory location is accessed but
..

−we need to bring in the page into a memory frame.

⚫ The Question
−When the memory is full (i.e., all page frames are used) and we

need to load a new page,
..

432/3/2026

Optimal Page Replacement Algorithm

⚫ Optimal page replacement algorithm
..

−This assumes that we know the future (which is impossible). Thus,

this is only a theoretical exercise.

−Page replacement algorithms try to approximate this as much as
possible.

442/3/2026

Optimal Page Replacement Example

⚫ Example
−Memory has 4 page frames.

−Memory page access order (by page number):

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

1

Page Access: 1,

1

2

2,

1

2

3

3,

1

2

3

4

4, 1, 2,

1

2

3

5

5,

4

2

3

5

4,1, 2, 3, 5

Page 4

Replaced

Page 1

Replaced

Page Faults:

Page

Replacement:

Page 4 is used

last in the future,

so replace it.

1,2,3 are all

never used

again

452/3/2026

FIFO (First In, First Out)

⚫ FIFO
−Keeps track of when a page was brought in to memory.

−..

1

Page Access:

1

2

1

2

3

1

2

3

4

5

2

3

4

4

1

2

3

Page Faults:

Page

Replacement:

1, 2, 3, 4, 1, 2, 5, 4,1, 52, 3,

5

1

3

4

5

1

2

4

4

5

2

3

5

1

2

3

⚫ 10 page faults!

⚫ This is simple but does not consider useful properties like locality.

462/3/2026

LRU (Least Recently Used)

⚫ ..
−It tries to approximate the optimal algorithm.

−It tries to infer the future based on past.

1

Page Access:

1

2

1

2

3

1

2

3

4

1

2

5

4

1

2

4

3

Page Faults:

Page

Replacement:

1, 2, 3, 4, 1, 2, 5, 4,1, 52, 3,

5

2

4

3

1

2

5

3

⚫ 8 page faults

⚫ Tracking access time is not simple to implement. Approximate it?

472/3/2026

ABCD: LRU Paging

⚫ Consider the following computer:
−4 page frames

−Uses LRU page replacement algorithm

How many page faults are there for the following sequence of
page accesses?

−1, 2, 3, 4, 5, 2, 4, 5, 1, 5

(a) 2 page faults

(b) 5 page faults

(c) 6 page faults

(d) 10 page faults

* * * * *(1) *(3)

482/3/2026

Second-Chance
⚫ Second Chance is an approximation of LRU
−Each page has a reference bit (ref_bit), initially = 0

−..

−We maintain a moving pointer to the next (candidate) “victim”.

⚫ When choosing a page to replace,
check ref_bit of victim:

−..

−Else

⚫Clear ref_bit to 0.

⚫Leave page in memory

..

⚫Move pointer to next page (wrapping around)

⚫Repeat till a victim is found.

Ref.

Bit

Pages

0 ...

1 ...

1 ...

0 ...

Next

Victim

492/3/2026

Second Chance Example

⚫ Example
−Assume we have triggered a page fault.

−No empty pages, so must replace.

−Let’s find the victim page to replace.

Ref.

Bit

Pages

0 ...

1 ...

1 ...

0 ...

Next

Victim

Initial State

Ref.

Bit

Pages

0 ...

0 ...

1 ...

0 ...

Clear flag;

Move on

Ref.

Bit

Pages

0 ...

0 ...

0 ...

0 ...

Clear flag;

Move on

Ref.

Bit

Pages

0 ...

0 ...

0 ...

1 changed

Found

Victim Page!

502/3/2026

ABCD: Second Chance

⚫ Using second chance page replacement algorithm, which
page will be the next victim?

Ref.

Bit

Pages

1 Page 110

1 Page 111

0 Page 101

1 Page 001
Next

Victim

(a) Page 110b

(b) Page 111b

(c) Page 101b

(d) Page 001b

512/3/2026

Thrashing

522/3/2026

Thrashing

⚫ If a process access a large amount of memory,
OS could keep needing to bring new pages into memory

−Example:
An process that jumps through a huge amount of memory, reading

one value every 4K (once per page).

⚫ Thrashing:
−

a process is too busy swapping in and out pages
and not really executing its program on the CPU.

532/3/2026

Summary
⚫ Virtual Memory

−Process works only in the virtual memory space.

−OS can flexibly share memory between processes.

−Gives process memory isolation.

⚫ Address Translation
−Converting (virtual) address to physical address.

⚫ Paging

−Virtual memory broken up into identical size pages.

−Physical memory broken up into page frames (“frames”).

⚫ Segmentation

−Like paging, but different size regions (segments).

⚫ Page replacement algorithms:

−Optimal, FIFO, LRU, Second Chance
542/3/2026

	Slide 1
	Slide 2: Topics
	Slide 3
	Slide 4: Details
	Slide 5: Memory Layout in the Early Days
	Slide 6: Early Memory Sharing Attempt
	Slide 7
	Slide 8: Address-Based Memory Operations
	Slide 9: Locality
	Slide 10: Understanding Memory Solutions
	Slide 11: ABCD: Locality
	Slide 12
	Slide 13: Memory Abstraction
	Slide 14: Virtual Address Space
	Slide 15: Room Analogy
	Slide 16: Room Analogy (cont)
	Slide 17: Process Virtual Memory
	Slide 18: Benefits of Virtual Memory
	Slide 19: Room Analogy
	Slide 20
	Slide 21: Address Translation
	Slide 22: Address Translation
	Slide 23: Address Translation
	Slide 24: Address Translation
	Slide 25
	Slide 26: Pages
	Slide 27: Page Frames
	Slide 28: Address Translation
	Slide 29: ABCD: Address Translation
	Slide 30: Page Table
	Slide 31: Address Translation Example
	Slide 32: Number of Pages
	Slide 33: Page Table Size
	Slide 34: ABCD: Address Translation
	Slide 35
	Slide 36: Segmentation
	Slide 37: Segmentation Address translation
	Slide 38: Segmentation and External Fragmentation
	Slide 39: Paging and External Fragmentation
	Slide 40
	Slide 41: Out of Memory
	Slide 42: Demand Paging
	Slide 43: Page Replacement Algorithms
	Slide 44: Optimal Page Replacement Algorithm
	Slide 45: Optimal Page Replacement Example
	Slide 46: FIFO (First In, First Out)
	Slide 47: LRU (Least Recently Used)
	Slide 48: ABCD: LRU Paging
	Slide 49: Second-Chance
	Slide 50: Second Chance Example
	Slide 51: ABCD: Second Chance
	Slide 52
	Slide 53: Thrashing
	Slide 54: Summary

