
Scheduling

Slides 4CMPT 201 11/11/26

Instructor: Linyi Li
Slides adapted from Dr. B. Fraser

Topics

1) Computers seem magically able to do
more than one thing at once.

a)How do they have multiple programs running "at once"?
b)How can multiple users log into a computer at once?

2) How does the kernel decide who's turn it is to use the CPU?

21/11/26

The story so far...

l “In the beginning”... CPUs had a single
core and one program running.

l Then "back in the day..." computers
had a single core but many users.

-Each user might have a terminal and want
to run programs
-How do they share the same CPU?

l "These days..." CPUs have many
cores, but..

l Things that need to run:
..

many more processes than cores.

31/11/26

More Depth

l We will cover scheduling a little to understand the problem.
-CMPT301 teaches it in depth

l Can read more in OSTEP
https://pages.cs.wisc.edu/~remzi/OSTEP/

Has in-depth discussions beyond scope of this course.
-Chapter 7 Scheduling: Introduction
https://pages.cs.wisc.edu/~remzi/OSTEP/cpu-sched.pdf

-Chapter 8 Scheduling: The Multi-Level Feedback Queue
https://pages.cs.wisc.edu/~remzi/OSTEP/cpu-sched-mlfq.pdf

-Chapter 9.7 The Linux Completely Fair Scheduler (CFS)
https://pages.cs.wisc.edu/~remzi/OSTEP/cpu-sched-lottery.pdf

41/11/26

CPU Scheduling

51/11/26

CPU Scheduling

l CPU Scheduling
-..
-Or, sharing multiple cores by multiple processes
(beyond the scope of this course)

l Context switch
-..

-This has overhead (work) to do this switch,
so don't do it too frequently.
-Stopped process can later be resumed exactly where it left off once
it has another turn on the CPU.

61/11/26

..

Process Lifecycle

l Scheduling
..

l Scheduler
Component of the kernel that picks the next process to run.

Disk Ready
Queue

Executing
(CPU)

I/O
Queue

ScheduledLoaded into
process

Program
on disk

Executes
I/O Operation

Queue of processes
which are waiting for

some CPU time

71/11/26

Preempted

Done
I/O

Types of Scheduling Algorithm

l Non-preemptive Scheduling
-A process gives up the core when it:

l..
l..
e.g., I/O, child wait, sleep

l Preemptive Scheduling
-The kernel stops a process at any time.

l Preemptable Kernel
-(almost) all syscalls into the kernel itself can be preempted!
-Linux Real-time kernel (PREEMPT_RT) merged to mainline kernel
Sept 2024!

81/11/26

Scheduling Criteria

l We want to maximize:
- : keep the CPU as busy as possible
- : # of processes that complete their
execution per time unit

l We want to minimize:
-
amount of time to execute a particular process
(time from submission to termination)
- : amount of time a process has been waiting
in ready queue
- : amount of time it takes from when a
request is submitted until the first response is produced

CPU utilization
Throughput

Turnaround time:

Waiting time

Response time

91/11/26

Scheduling Algorithms

101/11/26

Scheduling Simplifications

l Each process needs the CPU for a certain amount of time.
-We'll assume we know how much time it needs at the start, but
could be estimated.

l Often processes are long lived, but only need the CPU in
short bursts of CPU time.

-Here we'll just look at one such burst of time, but in reality a process
often has many such bursts.

Arrival Time
P1

P2
P3

P4

111/11/26

..

First Come, First Served (FCFS)

l Simplest algorithm
-..
-..
(once running, a process keeps running)

l Waiting time
..

-Used to assess how good an algorithm is.

There are other metrics are based on scheduling
criteria above, but waiting time is easy to calculate, so

we'll use it for comparing scheduling algorithms.

121/11/26

Arrival Time

First Come, First Serve Example
P1 P2 P3 P4

Execution Time 7 4 1 4
Arrival Time 0 2 4 5

P1

P2
P3

P4

Execution Time

P1 P2 P3 P4
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

FCFS is non-
preemptive

Wait time:
= (0 + 5 + 7 + 7)
Average wait time:
= 19 / 4
= 4.75

131/11/26

ABCD: First Come, First Served (FCFS)
l What is the total wait time for the following processes using

FCFS? (if same arrival time, order by index)

(a) 40 + 20 + 8 = 68
(b) 40 + 20 + 8 + 10 = 78
(c) 40 + 60 + 68 = 168
(d) 40 + 60 + 68 + 78 = 246

P1 P2 P3 P4
Execution Time 40 20 8 10
Arrival Time 0 0 0 0

Answer: C

141/11/26

ABCD: First Come, First Served (FCFS)
l What is the total wait time for the following processes using

FCFS? (if same arrival time, order by index)

(a) 10 + 30 + 38 = 78
(b) 10 + 30 + 38 + 78 = 156
(c) 10 + 20 + 8 = 38
(d) 10 + 20 + 8 + 40 = 78

P1 P2 P3 P4
Execution Time 10 20 8 40
Arrival Time 0 0 0 0

l What is the problem with FCFS?
-A long process can sabotage all other processes.

Answer: a

151/11/26

Shortest Job First (SJF)

l Let's try something where a long process doesn't sabotage
all other processes.

l Shortest Job First Scheduling Algorithm
-..

-Non-preemptive:
Once running, a job runs to completion
-* Theoretically optimal waiting time, if all processes arrive at the
beginning
• Prove by reordering

Assume for the sake of
discussion, we know how
long each process takes.

Not always possible but
can be estimated.

161/11/26

Arrival Time

Shortest Job First Example
P1 P2 P3 P4

Execution Time 7 4 1 4
Arrival Time 0 2 4 5

P1

P2
P3

P4

Execution Time

P1 P2P3 P4
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

ShortestSJF is non-
preemptive

Total Wait Time:
= (0 + 6 + 3 + 7) = 16

Average wait time:
= 16 / 4
= 4

171/11/26

Shortest Remaining Time First (SRTF)

l Schedule the process with..

-This is preemptive:
-

When a new job arrives,
..

181/11/26

Arrival Time

Shortest Remaining Time First Example
P1 P2 P3 P4

Execution Time 7 4 1 4
Arrival Time 0 2 4 5

P1

P2
P3

P4

P1 P2 P3 P4
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Execution Time

Always pick
shortest remaining

time

SRTF is
preemptive

P1P2

Wait Times
P1 P2 P3 P4

= 12

Average Wait Time
= 12 / 4
= 3

0+9 0+1 0 2

191/11/26

More on SRTF and Wait Time Counting

l When preempted,
-Wait counter starts;
-So, for a process

Wait time = end timestamp – execution time – arrival timestamp

l * SRTF (Shortest Remaining Time First) minimizes waiting time

-Why?
-Recall SJF (Shortest Job First, the non-preemptive version)
conditionally minimizes waiting time
-SRTF is anytime SJF
-Prove by contradiction

201/11/26

Wait Times
P1 P2 P3 P4

= 12
0+9 0+1 0 2

Round Robin (RR)

l Forget about knowing how long things take:
just give everyone..

l Preemptive
-Quantum:
..
-Each x units of time (quantum) the scheduler will:

lMove currently running process
to the back of the ready queue
lTake first process in ready queue and runs it
lGo to next process if quantum used up or current process finishes

-Newly arrived processes go at back of ready queue

211/11/26

Arrival Time

Round Robin Example (Quantum = 3ms)
P1 P2 P3 P4

Execution Time 7 4 1 4
Arrival Time 0 2 4 5

P1

P2
P3

P4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Execution Time

Change every
3ms

Wait Times
P1 P2 P3 P4

= 28

Average Wait Time
= 28 / 4
= 7

0+3+5 1+7 5 5+2

P1 P2 P3 P4P1 P2 P1 P4

221/11/26

ABCD: Round Robin

l If the quantum is very long,
then round robin is effectively the same as:
(a) First come first serve
(b) Shortest Job First
(c) Shortest remaining time first

l If the quantum is very short, what can go wrong?
(a)Processes do not make progress because they keep being
reset when preempted

(b)Processes do not make progress because they keep being
killed when preempted

(c)Context switch overhead is too high

(d)The ready queue is likely to be empty

Answers: a, c

231/11/26

..

Priority Scheduling

l Priority Scheduling
..

-This can be either preemptive or non-preemptive.

l Motivation: real-time tasks with deadlines
-Some systems require hard or soft deadlines for their computational tasks.
-e.g, an airplane controller must respond to an outside event (e.g., an
incoming bird) within a fixed (short?) time period.

When a new process is added to the ready
queue, do we allow a context switch?

241/11/26

Real-Time Deadlines

l Hard real-time systems:
-..
because the consequence of missing a deadline can be catastrophic.

l Soft real-time systems:
-Approximate deadlines that can be missed but should not be by
much.

l Real-time tasks usually have higher priorities,
i.e., they are more important to run.

251/11/26

Priority Scheduling (cont)

l Task priority is typically expressed as a number
(where a smaller number has a higher priority).

l Problem: Starvation
-..
-e.g, If high priority processes keep arriving, low priority processes
may never run

261/11/26

Multilevel Queue Scheduling

l Multilevel Queue Scheduling
-..
-Each category gets its own
..

System Process Queue

Foreground Process Queue

Background Process Queue

Priority 0

Priority 1

Priority 2

271/11/26

Multilevel Queue Scheduling
l Each queue gets CPU time based on priority
-One idea: Weighted Round Robin
It’s RR, but give more turns to higher-priority queues.
-e.g., Schedule turns for each priority:
0, 1, 2, 0, 1, 0, 0, 1, 2, 0, 1, 0, 0, 1, 2, 0, 1, 0,

l During each queue’s turn:
-..

l Avoids starvation: Each queue gets a chance to run.

System Process Queue

Foreground Process Queue

Background Process Queue

Priority 0
RR

Priority 1
FCFS

Priority 2
SJF

Priority 0
gets more
turns than

1 or 2.

281/11/26

Multilevel Feedback Queue Scheduling
l Multilevel Feedback Queue
-Use multiple queues.
-..
-Like Multilevel Queue, but processes lose priority via aging:
Lower priority by moving to lower queue if process runs too long.

Q0: RR
 (quantum = 8)

Q1: RR
 (quantum = 16)

Q2: FCFS

Job A enters, gets 8ms

Job A is preempted; moved to Q1;
All other jobs in Q0 run.

When Q0 is empty,
Job A gets 16ms

Job A is preempted; moved to Q2;
All other jobs in Q0 and Q1 run.

If Q0 and Q1 are empty,
Job A runs until done (FCFS)

291/11/26

Linux is Nice

l Linux categorizes processes into two classes
-Real-time processes (priority values 0 to 99)
-Normal processes (priority values 100 to 139)

l We can use nice value to..

-Nice values range from -20 to +19
(lower nice == higher priority).
-The default nice value is 0.
-The nice -20 = priority 100, etc.

Real-time processes Normal Processes
Priority 0 10099 139

Nice
-20

Nice
+19

Nice
0

change/assign a priority for a normal process.

301/11/26

Linux Completely Fair Scheduler (CFS)

l Longer running processes get a lower priority.
-..
-Older processes lose priority (aging)

l CFS tries to make sure that
..

-CFS uses virtual run time instead of physical (actual) run time
-Virtual run time = physical run time + decay-formula

lHigher decay with lower priority
li.e., the decay formula produces a bigger value for a lower priority

-Stored internally in a red-black tree based on virtual run time

311/11/26

Process Types
Interactive vs. batch
-Interactive

lMainly user driven; regular desktop applications

-Batch
lProgram runs from start to end; no interaction needed.
e.g., Compiling a program, Data analytics

I/O bound vs. CPU bound
-I/O bound

lMore I/O than computation e.g., format change, such as CSV to XML

-CPU bound
lMore computation than I/O e.g., compression, cryptography, etc.

-(More: Memory bound, Communication bound, …)

321/11/26

Summary
l Scheduler picks what job to run next.
l Algorithms:
-First come, first serve
-Shortest job first
-Shortest remaining time first
-Round Robin
-Multilevel queue
-Multilevel feedback queue
-Completely Fair Schedule

l Drawing process scheduling diagrams
-Compute Wait time, average wait time

331/11/26

