Instructor: Linyi Li
Slides adapted from Dr. B. Fraser

/11726 - CMPT 201 Slides 4

Topics

1) Computers seem magically able to do
more than one thing at once.

a)How do they have multiple programs running "at once"?

b)How can multiple users log into a computer at once?

2) How does the kernel decide who's turn it is to use the CPU?

1/11/26

The story so far...

“In the beginning”... CPUs had a single
core and one program running.

. Then "back in the day..." computers
had a single core but many users.
~-Each user might have a terminal and want

to run programs
-How do they share the same CPU?

o "These days..." CPUs have many

cores, but..
many more processes than cores.

1/11/26

More Depth

« We will cover scheduling a little to understand the problem.
-CMPT301 teaches it in depth

https://pages.cs.wisc.edu/~remzi/OSTEP/
Has in-depth discussions beyond scope of this course.

Scheduling: Introduction
https //pages.cs.wisc.edu/~remzi/OSTEP/cpu-sched.pdf

- Scheduling: The Multi-Level Feedback Queue
https://pages.cs.wisc.edu/~remzi/OSTEP/cpu-sched-mifqg.pdf

The Linux Completely Fair Scheduler (CFS)
https //pages.cs.wisc.edu/~remzi/OSTEP/cpu-sched-lottery.pdf

1/11/26

CPU Scheduling

1/11/26

CPU Scheduling

-Or, sharing multiple cores by multiple processes
(beyond the scope of this course)

~This has overhead (work) to do this switch,
so don't do it too frequently.

~-Stopped process can later be resumed exactly where it left off once
it has another turn on the CPU.

1/11/26

Process Lifecycle

Queue of processes
which are waiting for
some CPU time

P Queue (CPU)

Program
on disk Preempted

Execytes
I/O Operation

« Scheduling

« Scheduler
Component of the kernel that picks the next process to run.

1/11/26

Types of Scheduling Algorithm

-A process gives up the core when it:

/O, child wait, sleep

-The kernel stops a process at any time.

—(almost) all syscalls into the kernel itself can be preempted!

-Linux Real-time kernel (FPREEMPT RT) merged to mainline kernel
Sept 2024!

1/11/26

Scheduling Criteria

- CPU utilization : keep the CPU as busy as possible

Vv

- Throughput . # of processes that complete their
execution per time unit

>< - Turnaround time:
amount of time to execute a particular process
(time from submission to termination)

— Waiting time : amount of time a process has been waiting
In ready queue

- Response time : amount of time it takes from when a
request is submitted until the first response is produced

1/11/26

Scheduling Algorithms

1/11/26

Scheduling Simplifications

~We'll assume we know how much time it needs at the start, but
could be estimated.

~Here we'll just look at one such burst of time, but in reality a process
often has many such bursts.

Arrival Time

P+

1/11/26

First Come, First Served (FCFS)

(once running, a process keeps running)

. Waiting time

-Used to assess how good an algorithm is.

There are other metrics are based on scheduling
criteria above, but waiting time is easy to calculate, so
we'll use it for comparing scheduling algorithms.

1/11/26

First Come, First Serve Example

P2 P3 P4

ﬂ---

Arrival Time
=y Wait time:
=(0+5+7+7)
Average wait time:
=19/4
=4.75

P+ P3 |P4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Execution Time

FCFS is non-
preemptive

1/11/26

ABCD: First Come, First Served (FCFS)

« What is the total wait time for the following processes using
FCFS? (if same arrival time, order by index)

P2 P3 P4 (a)40+20 +8 =68

-ﬂ- b)40+20+8+10 =78

)
(b)

ﬂﬂﬂﬂ (c) 40 + 60 + 68 = 168
(d)

d)40+60+68 +78 =246

1/11/26

ABCD: First Come, First Served (FCFS)

« What is the total wait time for the following processes using
FCFS? (if same arrival time, order by index)

P2 P3 P4 (a)10 + 30 + 38 =78

-ﬂ- b)10+30+38+78 =156

(
ﬂﬂﬂﬂ (c)10+20 +8 = 38
(

d)10+ 20+ 8 + 40 =78

« What is the problem with FCFS?
-A long process can sabotage all other processes.
1/11/26

Shortest Job First (SJF)

. Let's try something where a long process doesn't sabotage
all other processes.

Assume for the sake of
discussion, we know how
long each process takes.

Not always possible but
can be estimated.

-Non-preemptive:
Once running, a job runs to completion

—* Theoretically optimal waiting time, if all processes arrive at the
beginning

Prove by reordering

1/11/26

Shortest Job First Example

P2 P3 P4

ﬂ---

Arrival Time Total Wait Time:
=(0+6+3+7)=16

P+

Average wait time:
=16/4
=4

P1 P3| P2 =
0 1 2 3 4 5 6 7 8 9 10 M1 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Execution Time

preemptive

1/11/26

Shortest Remaining Time First (SRTF)

-This Is preemptive:

When a new job arrives,

1/11/26

Shortest Remaining Time First Example

P2 P3 P4

ﬂ---

Arrival Time

P+

Wait Times
P1 P2
0+9 0+1
=12

Average Wait Time
=12/4
=3

)

P+

2 3 10 11

Execution Time

SRTE is Always pick
preemptive shortest remaining

time

1/11/26

12

13 14 15 16 17 18 19 20 21 22 23 24 25

More on SRTF and Wait Time Counting

Wait Times
. P1 P2
~Wait counter starts; 0+9 0+1

=12
-S0, for a process

Wait time = end timestamp — execution time — arrival timestamp

o * SRTF (Shortest Remaining Time First) minimizes waiting time

~Why?

-Recall SJF (Shortest Job First, the non-preemptive version)
conditionally minimizes waiting time

-SRTF is anytime SJF

-Prove by contradiction

1/11/26

Round Robin (RR)

just give everyone..

_Quantum:

~-Each x units of time (quantum) the scheduler will:

«Move currently running process
to the back of the ready queue

- Take first process in ready queue and runs it
«(Go to next process if quantum used up or current process finishes
~-Newly arrived processes go at back of ready queue

1/11/26

Round Robin Example (Quantum = 3ms)

P2 P3 P4

--- Ul

Arrival Time = 28

P+

Average Wait Time
=28/4
=7

P2 P+ P3 |P4 P2 [P1 P4
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Execution Time

Change every
3ms

1/11/26

ABCD: Round Robin

. If the quantum is very long,
then round robin is effectively the same as:

(a) First come first serve
(b) Shortest Job First
c) Shortest remaining time first

 If the quantum is very short, what can go wrong?

(a)Processes do not make progress because they keep being
reset when preempted

(b)Processes do not make progress because they keep being
killed when preempted

(c)Context switch overhead is too high

(d)The ready queue is likely to be empty

1/11/26

Priority Scheduling

-This can be either preemptive or non-preemptive.

When a new process is added to the ready
queue, do we allow a context switch?

~Some systems require hard or soft deadlines for their computational tasks

- an airplane controller must respond to an outside event (an
incoming bird) within a fixed (short?) time period.

1/11/26

Real-Time Deadlines

because the consequence of missing a deadline can be catastrophic.

~-Approximate deadlines that can be missed but should not be by
much.

. Real-time tasks usually have higher priorities,
they are more important to run.

1/11/26

Priority Scheduling (cont)

« lask priority is typically expressed as a number
(where a smaller number has a higher priority).

: Starvation

— If high priority processes keep arriving, low priority processes
may never run

1/11/26

Multilevel Queue Scheduling

~-Each category gets its own

System Process Queue
Foreground Process Queue

Background Process Queue

1/11/26

Priority O

Priority 1

Priority 2

Multilevel Queue Scheduling

-One idea: Weighted Round Robin
It's RR, but give more turns to higher-priority queues.

- Schedule turns for each priority:
0,12, 0,1, 0, 0,1,2, 0,1, 0, 0,1,2, 0,1, 0, ...

Priority 0 System Process Queue Priority O

gets more RR
turns than

'or Foreground Process Queue Priority 1

FCFS

Background Process Queue Priority 2
SJF

Each queue gets a chance to run.
1/11/26

Multilevel Feedback Queue Scheduling

-Use multiple queues.

-Like Multilevel Queue, but processes lose priority via aging:
Lower priority by moving to lower queue if process runs too long.

0 RIR Job A enters, gets 8ms

Job A is preempted; moved to Q1;
All other jobs in QO run.

When QO is empty,
Job A gets 16ms
Job A is preempted; moved to Q2;
All other jobs in Q0 and Q1 run.

Q2: FCFS If Q0 and Q1 are empty,
Job A runs until done (FCFS)

(quantum = 16)

1/11/26

Linux I1s Nice

1/11/26

-Real-time processes (priority values 0 to 99)

~-Normal processes (priority values 100 to 139)

« We can use nice value to..
change/assign a priority for a normal process.

~Nice values range from -20 to +19
(lower nice == higher priority).
-The default nice value is 0.

-The nice -20 = priority 100, etc.
99 100 139

Priority O
Real-time processes Normal Processes

Nice Nice Nice
-20 0) +19

Linux Completely Fair Scheduler (CFS)

~Older processes lose priority (aging)

-CFS uses virtual run time instead of physical (actual) run time

~Virtual run time = physical run time + decay-formula
-Higher decay with lower priority
. the decay formula produces a bigger value for a lower priority

~Stored internally in a red-black tree based on virtual run time

1/11/26

Process Types

~Interactive
-Mainly user driven; regular desktop applications
-Batch

.Program runs from start to end; no interaction needed.
Compiling a program, Data analytics

-1/0 bound
-More 1/O than computation format change, such as CSV to XML

-CPU bound
«More computation than I/O compression, cryptography, etc.

~(More: Memory bound, Communication bound, ...)

1/11/26

Summary

» Scheduler picks what job to run next.

~First come, first serve
~Shortest job first

~-Shortest remaining time first
-Round Robin

~Multilevel queue

~Multilevel feedback queue
-Completely Fair Schedule

-Compute Wait time, average wait time

1/11/26

