Signals

Instructor: Linyi Li
Slides adapted from Dr. B. Fraser

Topics

1) We can create processes, but how can they communicate?

a)How can regular code with loops and functions
handle an asynchronous communication?

b)How can a child send a message to the parent?

1/12/2026

-

Introduction to Signals

Signals

-Programs and the kernel can send signals to itself or other
programs.

-Parent process spawns children to search for a golden ticket.
~Parent: ..

~Child: ..
when discovered a ticket.

1/12/2026 Generated with DeepAl 4

Pseudocode for Signals

. Parent . Child

handler() {
print "Found ticket!"
}

main() { if(pid 1= 0} {
pid = fork()

main() {

} else {
if (pid 1= 0) { if (found_ticket()) {
register signal handler signal parent

wait forever }
} }
} ' } , |

sigaction(...)

1/12/2026

Function Pointers

~Normal variables hold values.
~Pointers hold the address of a variable.

~-Function pointers..
They allow us to pass around (and call) functions

handler() {

print "Found ticket!"

}

1/12/2026

Why Function Pointers?

~-How does the bluetooth module / library

~-Application just keep asking it!

~Slow, power hungry!

-Have bluetooth module directly execute our application’s code!
-How? Have the module to call our function.

-How? Give it..

1/12/2026

Coding with Function Pointers

<stdio.h>
happy
printf(" 1s great!\n"
sad
printf("%d sucks!\n" Looks complex, but
it's just the prototype with:
main a) .. Variable name in brackets

b).. *before the name
my_function

Can also use:
my_function = &happy;

my_function(i) Call the function pointer like it's

just a normal function.

1/12/2026

ABCD: Function Pointers

« Which of the following gets the address of a function?

(a) &foo()
(b) *foo()

« Which of the following correctly creates a function pointer
named func that points to int foo(char a, int b)?

(a)int (*foo)(char a, int b) = func;
(b) int (*func)(char a, int b) = foo;

(c) int *(foo)(char a, int b) = func;

1/12/2026

-

Coding with Signals

man 7 signal

1/12/2026

Run: man 7 signal

(scroll down to "Standard signals’)

.Integer symbols S
.SIGINT: CTRL-C S
SIGKILL: kil call S

SIGSEGV: Invalid memory reference

'SIGTERM=%d\n"

'SIGUSR1=%d\n"

'SIGINT=%d\n", SIGINT);
SIGKILL);
SIGTERM) ;

SIGKILL=%d\n"

’

’
SIGSEGV=%d\n", SIGSEGV);

’

’

SIGUSR2=%d\n"

(scroll up to "Sending a signal’)

oraise(): to itself

«kill(): to a process

.man sigaction

.The important part is filling out struct sigaction.

SIGUSR1);
SIGUSR2) ;

NT=
SIGKILL=9

SIGTERM=15

SIGSEGV=11
SIGUSR1=10
SIGUSR2=12

11

Signals and Function Pointers

~write a function to handle a certain signal.

-register handler with Linux using sigaction():
pass it a function pointer to our handler.

int signum, struct sigaction *act, struct si

Signal to

handle,
such as
SIGSEGV

1/12/2026

int sigaction(
action *oldact);

Struct configuring our handler. ,
Gives us

back the
old signal
handler.

struct sigaction

.sa_handler = ..
.sa_flags = ..
.sa_mask = ..

12

Sigaction

int sigaction(int signum, struct sigaction *act, struct sigaction *oldact);

e Signum

-The signal number to register the handler

- act . oldact
-Specify action to perform “Nullable

-Recall: Define a struct C: struct sigaction act; _Return back original
-Contain three major fields: handler

1. act.sa_handler = handler_func;
A pointer void (*sa_handler)(int) to signal handler, receiving the signal number
SIG_DFL (default) or SIG_IGN (ignore)

2. act.sa_flags = 0;
A mask to modify the behavior of signal. By default we use 0

3. sigemptyset(&act.sa_mask);

Specify signals should be blocked during signal handler execution in addition to the triggering signal

13

Signal Safety

Run: man 7 signal-safety
async-signal-safe function: can be safely called from within a signal handler

The function should guarantee not to interfere any operation being
interrupted

Example: all stdio library functions are not async-signal-safe!
Reason:
When performing buffered 1/O, need allocated data buffer & pointers

When main program partially updates the buffer, signal handler that
uses it result in wrong buffer status

Workaround: use read(), write() instead
The file descriptor for stdin/out is STDIN_FILENO, STDOUT FILENO

Signal with Fork

 fork(): inherit signal handler in the new process
o fork() + exec(): not inherit signal handler (normally)

(0]

Get

Signal

handlers
exec
Reset
Signal

| handlers

Activity: sigaction()

e (10 min)
~use sigaction() to install a SIGINT signal handler:
Print "CTRL-C pressed”

-infinite loop calling sleep()

-Use btop to send SIGINT, and Kill
~Use write(STDOUT _FILENGO,) instead of printf() (not signal safe)
-sigaction()'s struct:

.Create a struct, then one at a time initialize the fields

.Set the .sa_handler to your function.

.Set the .sa_flags to 0 (don't need any here)

oInitialize .sa_mask to empty; man sigemptyset()
1/12/2026

16

sig_handle_sigint.c +

#define _POSIX_C_SOURCE 200809
#include <signal.h>

#include <stdbool.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <unistd.h>

static char *message = "CTRL-C Pressed\n";
void handle_sigint(int signum) {
write(STDOUT_FILENO, message, strlen(message));
// printf("%s", message); // Don't use; not signal safe.

int main() {

struct sigaction act;
act.sa_handler = handle_sigint;
act.sa_flags = 0;
sigemptyset(&act.sa_mask);

22 | // Register signal handler
23 ;| int ret = sigaction(SIGINT, &act, NULL);

24 , if (ret == -1) {

25 perror("Sigaction() failed");
26 exit(EXIT_FAILURE);

27 }

28

29 : while (true) {
30 sleep(1);
}

32 } 17

Activity: Kill()

o (5 min)
~parent process should:

.use sigaction() install SIGINT signal handler.
Print "CTRL-C pressed"

.infinite loop calling sleep()

—child process should:
.infinite loop that periodically sends
SIGINT to the parent & sleeps

kill()

1/12/2026

18

} else {
// Child to send signals
while (true) {
sleep' 2 ;
printf "HEY Parent!\n" ;

if (kill(getppid(), SIGINT) == -1) {
perror("Unable to send signal to parent.");

exit(EXIT_FAILURE);
1
3

ABCD: Signals

. What is wrong with this signal handler for SIGINT?

(a) It has the wrong name.

void do_signal(int signum) {
printf("Signal %d\n", signum); (b) It has the wrong arguments.

) (c) It has the wrong return type.

d) It calls the wrong function.

. What is the data type of the second argument to sigaction()?

(a) Function pointer to signal handler.
(b) Pointer to a struct which contains a function pointer.

(c) The signal number to respond to.

(d) Pointer to the mask of signals to block while in the signal handler

1/12/2026

20

Summary

~Allow asynchronous communication.

. sigaction()
~-Configuration done with a struct

-Set signal handler with a function pointer

. kill()

1/12/2026

21

	Slide 1
	Slide 2: Topics
	Slide 3
	Slide 4: Signals
	Slide 5: Pseudocode for Signals
	Slide 6: Function Pointers
	Slide 7: Why Function Pointers?
	Slide 8: Coding with Function Pointers
	Slide 9: ABCD: Function Pointers
	Slide 10
	Slide 11: man 7 signal
	Slide 12: Signals and Function Pointers
	Slide 13
	Slide 14
	Slide 15
	Slide 16: Activity: sigaction()
	Slide 17: Code
	Slide 18: Activity: kill()
	Slide 19: Code
	Slide 20: ABCD: Signals
	Slide 21: Summary

