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Topics

1) We can create processes, but how can they communicate?

a)How can regular code with loops and functions

handle an asynchronous communication?

b)How can a child send a message to the parent?
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Introduction to Signals
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Signals

⚫ Signals are..
 

−Programs and the kernel can send signals to itself or other 
programs.

⚫ Wonka Golden Ticket Example
−Parent process spawns children to search for a golden ticket.

−Parent: ..

−Child:  ..

   when discovered a ticket.
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Pseudocode for Signals

⚫ Parent ⚫ Child

...

main() {

    ...

    if(pid != 0} {

        ...

    } else {

        if (found_ticket()) {

            signal parent

        }

    }

}

handler() {

    print "Found ticket!"

}

main() {

    pid = fork()

    if (pid != 0) {

        register signal handler

        wait forever

    }

}
sigaction(...) kill(...)

51/12/2026



Function Pointers

⚫ Variables
−Normal variables hold values.

−Pointers hold the address of a variable.

−Function pointers.. 

They allow us to pass around (and call) functions

handler() {

    print "Found ticket!"

}
my_function
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Why Function Pointers?

⚫ Imagine an embedded system receiving bluetooth data.
−How does the bluetooth module / library 
..

⚫ Idea 1:
−Application just keep asking it!

−Slow, power hungry!

⚫ Idea 2:
−Have bluetooth module directly execute our application’s code!

−How? Have the module to call our function.

−How? Give it.. 
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..

..

..

Coding with Function Pointers

Looks complex, but 

it’s just the prototype with:

a) ..

b) ..

Can also use:

my_function = &happy;

Call the function pointer like it’s 

..    

  

Variable name in brackets

* before the name

just a normal function.
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ABCD: Function Pointers

⚫ Which of the following gets the address of a function?

⚫ Which of the following correctly creates a function pointer
named func that points to int foo(char a, int b)?

(a) &foo()

(b) *foo()

(c) &foo

(d) foo

#1: c and d are correct

#2: b - variable name in brackets with star

(a) int (*foo)(char a, int b) = func;

(b) int (*func)(char a, int b) = foo;

(c) int *(foo)(char a, int b) = func;

(d) int *(func)(char a, int b) = foo;
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Coding with Signals
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man 7 signal

⚫ Run: man 7 signal
−Some examples (scroll down to `Standard signals`)

⚫Integer symbols

⚫SIGINT: CTRL-C

⚫SIGKILL: kill call

⚫SIGSEGV: Invalid memory reference

−How to send a signal (scroll up to `Sending a signal`)

⚫raise(): to itself

⚫kill(): to a process

−Signal handler

⚫man sigaction

⚫The important part is filling out struct sigaction. 

When using signals, you need to use signal safe functions.
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Signals and Function Pointers

⚫ To receive a signal we must:
−write a function to handle a certain signal.

−register handler with Linux using sigaction():

pass it a function pointer to our handler.

Signal to 

handle, 

such as 

SIGSEGV

Gives us 

back the 

old signal 

handler.

Struct configuring our handler.

struct sigaction

.sa_handler = ..

.sa_flags = ..

.sa_mask = ..

int sigaction( 

int signum, struct sigaction *act, struct sigaction *oldact);
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Sigaction

int sigaction( int signum, struct sigaction *act, struct sigaction *oldact );

⚫ signum
−The signal number to register the handler

⚫ act
−Specify action to perform

−Recall: Define a struct C: struct sigaction act;

−Contain three major fields:

1. act.sa_handler = handler_func;

• A pointer void (*sa_handler)(int) to signal handler, receiving the signal number

• SIG_DFL (default) or SIG_IGN (ignore)

2. act.sa_flags = 0;

• A mask to modify the behavior of signal. By default we use 0

3. sigemptyset(&act.sa_mask);

• Specify signals should be blocked during signal handler execution in addition to the triggering signal

13

⚫ oldact
−Nullable

−Return back original

handler



Signal Safety

• When using signals, you need to use signal safe functions in handler

Run: man 7 signal-safety

async-signal-safe function: can be safely called from within a signal handler

• The function should guarantee not to interfere any operation being

interrupted

Example: all stdio library functions are not async-signal-safe!

Reason:

• When performing buffered I/O, need allocated data buffer & pointers

• When main program partially updates the buffer, signal handler that

uses it result in wrong buffer status

Workaround: use read(), write() instead

• The file descriptor for stdin/out is STDIN_FILENO, STDOUT_FILENO



Signal with Fork

⚫ fork(): inherit signal handler in the new process

⚫ fork() + exec(): not inherit signal handler (normally)

fork

Get

Signal

handlers

exec

Reset

Signal

handlers
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Activity: sigaction()

⚫ (10 min) Write a program that:
−use sigaction() to install a SIGINT signal handler:

Print "CTRL-C pressed"

−infinite loop calling sleep()

⚫ Test using CTRL-C to test
−Use btop to send SIGINT, and kill

⚫ Hints
−Use write(STDOUT_FILENO, ....) instead of printf() (not signal safe)

−sigaction()'s struct:

⚫Create a struct, then one at a time initialize the fields

⚫Set the .sa_handler to your function.

⚫Set the .sa_flags to 0 (don't need any here)

⚫Initialize .sa_mask to empty; man sigemptyset()
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Code

⚫ Note function pointers

⚫ Note struct initialization
−Pass by ptr
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Activity: kill()

⚫ (5 min) Write a program that creates two processes:
−parent process should: 

⚫use sigaction() install SIGINT signal handler.

Print "CTRL-C pressed"

⚫infinite loop calling sleep()

−child process should: 

⚫infinite loop that periodically sends 

SIGINT to the parent & sleeps 

⚫ Hint
−kill()
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Code
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ABCD: Signals

⚫ What is wrong with this signal handler for SIGINT?

void do_signal(int signum) {

 printf("Signal %d\n", signum); 

}

(a) It has the wrong name.

(b) It has the wrong arguments.

(c) It has the wrong return type.

(d) It calls the wrong function.

Answer: d) printf() is not signal safe.

Answer: b)

⚫ What is the data type of the second argument to sigaction()?

(a) Function pointer to signal handler.

(b) Pointer to a struct which contains a function pointer.

(c) The signal number to respond to.

(d) Pointer to the mask of signals to block while in the signal handler

201/12/2026



Summary

⚫ Signals are notifications with specific meanings. 

−Allow asynchronous communication.

⚫ Configure to receive using sigaction()

−Configuration done with a struct

−Set signal handler with a function pointer

⚫ Send any signal with kill()
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