
Signals

Slides 3CMPT 201 11/12/2026

Instructor: Linyi Li

Slides adapted from Dr. B. Fraser

Topics

1) We can create processes, but how can they communicate?

a)How can regular code with loops and functions

handle an asynchronous communication?

b)How can a child send a message to the parent?

21/12/2026

Introduction to Signals

31/12/2026

Signals

⚫ Signals are..

−Programs and the kernel can send signals to itself or other
programs.

⚫ Wonka Golden Ticket Example
−Parent process spawns children to search for a golden ticket.

−Parent: ..

−Child: ..

 when discovered a ticket.

Generated with DeepAI 41/12/2026

Pseudocode for Signals

⚫ Parent ⚫ Child

...

main() {

 ...

 if(pid != 0} {

 ...

 } else {

 if (found_ticket()) {

 signal parent

 }

 }

}

handler() {

 print "Found ticket!"

}

main() {

 pid = fork()

 if (pid != 0) {

 register signal handler

 wait forever

 }

}
sigaction(...) kill(...)

51/12/2026

Function Pointers

⚫ Variables
−Normal variables hold values.

−Pointers hold the address of a variable.

−Function pointers..

They allow us to pass around (and call) functions

handler() {

 print "Found ticket!"

}
my_function

61/12/2026

Why Function Pointers?

⚫ Imagine an embedded system receiving bluetooth data.
−How does the bluetooth module / library
..

⚫ Idea 1:
−Application just keep asking it!

−Slow, power hungry!

⚫ Idea 2:
−Have bluetooth module directly execute our application’s code!

−How? Have the module to call our function.

−How? Give it..

71/12/2026

..

..

..

Coding with Function Pointers

Looks complex, but

it’s just the prototype with:

a) ..

b) ..

Can also use:

my_function = &happy;

Call the function pointer like it’s

..

Variable name in brackets

* before the name

just a normal function.

81/12/2026

ABCD: Function Pointers

⚫ Which of the following gets the address of a function?

⚫ Which of the following correctly creates a function pointer
named func that points to int foo(char a, int b)?

(a) &foo()

(b) *foo()

(c) &foo

(d) foo

#1: c and d are correct

#2: b - variable name in brackets with star

(a) int (*foo)(char a, int b) = func;

(b) int (*func)(char a, int b) = foo;

(c) int *(foo)(char a, int b) = func;

(d) int *(func)(char a, int b) = foo;

91/12/2026

Coding with Signals

101/12/2026

man 7 signal

⚫ Run: man 7 signal
−Some examples (scroll down to `Standard signals`)

⚫Integer symbols

⚫SIGINT: CTRL-C

⚫SIGKILL: kill call

⚫SIGSEGV: Invalid memory reference

−How to send a signal (scroll up to `Sending a signal`)

⚫raise(): to itself

⚫kill(): to a process

−Signal handler

⚫man sigaction

⚫The important part is filling out struct sigaction.

When using signals, you need to use signal safe functions.

111/12/2026

Signals and Function Pointers

⚫ To receive a signal we must:
−write a function to handle a certain signal.

−register handler with Linux using sigaction():

pass it a function pointer to our handler.

Signal to

handle,

such as

SIGSEGV

Gives us

back the

old signal

handler.

Struct configuring our handler.

struct sigaction

.sa_handler = ..

.sa_flags = ..

.sa_mask = ..

int sigaction(

int signum, struct sigaction *act, struct sigaction *oldact);

121/12/2026

Sigaction

int sigaction(int signum, struct sigaction *act, struct sigaction *oldact);

⚫ signum
−The signal number to register the handler

⚫ act
−Specify action to perform

−Recall: Define a struct C: struct sigaction act;

−Contain three major fields:

1. act.sa_handler = handler_func;

• A pointer void (*sa_handler)(int) to signal handler, receiving the signal number

• SIG_DFL (default) or SIG_IGN (ignore)

2. act.sa_flags = 0;

• A mask to modify the behavior of signal. By default we use 0

3. sigemptyset(&act.sa_mask);

• Specify signals should be blocked during signal handler execution in addition to the triggering signal

13

⚫ oldact
−Nullable

−Return back original

handler

Signal Safety

• When using signals, you need to use signal safe functions in handler

Run: man 7 signal-safety

async-signal-safe function: can be safely called from within a signal handler

• The function should guarantee not to interfere any operation being

interrupted

Example: all stdio library functions are not async-signal-safe!

Reason:

• When performing buffered I/O, need allocated data buffer & pointers

• When main program partially updates the buffer, signal handler that

uses it result in wrong buffer status

Workaround: use read(), write() instead

• The file descriptor for stdin/out is STDIN_FILENO, STDOUT_FILENO

Signal with Fork

⚫ fork(): inherit signal handler in the new process

⚫ fork() + exec(): not inherit signal handler (normally)

fork

Get

Signal

handlers

exec

Reset

Signal

handlers

15

Activity: sigaction()

⚫ (10 min) Write a program that:
−use sigaction() to install a SIGINT signal handler:

Print "CTRL-C pressed"

−infinite loop calling sleep()

⚫ Test using CTRL-C to test
−Use btop to send SIGINT, and kill

⚫ Hints
−Use write(STDOUT_FILENO,) instead of printf() (not signal safe)

−sigaction()'s struct:

⚫Create a struct, then one at a time initialize the fields

⚫Set the .sa_handler to your function.

⚫Set the .sa_flags to 0 (don't need any here)

⚫Initialize .sa_mask to empty; man sigemptyset()

161/12/2026

Code

⚫ Note function pointers

⚫ Note struct initialization
−Pass by ptr

171/12/2026

Activity: kill()

⚫ (5 min) Write a program that creates two processes:
−parent process should:

⚫use sigaction() install SIGINT signal handler.

Print "CTRL-C pressed"

⚫infinite loop calling sleep()

−child process should:

⚫infinite loop that periodically sends

SIGINT to the parent & sleeps

⚫ Hint
−kill()

181/12/2026

Code

191/12/2026

ABCD: Signals

⚫ What is wrong with this signal handler for SIGINT?

void do_signal(int signum) {

 printf("Signal %d\n", signum);

}

(a) It has the wrong name.

(b) It has the wrong arguments.

(c) It has the wrong return type.

(d) It calls the wrong function.

Answer: d) printf() is not signal safe.

Answer: b)

⚫ What is the data type of the second argument to sigaction()?

(a) Function pointer to signal handler.

(b) Pointer to a struct which contains a function pointer.

(c) The signal number to respond to.

(d) Pointer to the mask of signals to block while in the signal handler

201/12/2026

Summary

⚫ Signals are notifications with specific meanings.

−Allow asynchronous communication.

⚫ Configure to receive using sigaction()

−Configuration done with a struct

−Set signal handler with a function pointer

⚫ Send any signal with kill()

211/12/2026

	Slide 1
	Slide 2: Topics
	Slide 3
	Slide 4: Signals
	Slide 5: Pseudocode for Signals
	Slide 6: Function Pointers
	Slide 7: Why Function Pointers?
	Slide 8: Coding with Function Pointers
	Slide 9: ABCD: Function Pointers
	Slide 10
	Slide 11: man 7 signal
	Slide 12: Signals and Function Pointers
	Slide 13
	Slide 14
	Slide 15
	Slide 16: Activity: sigaction()
	Slide 17: Code
	Slide 18: Activity: kill()
	Slide 19: Code
	Slide 20: ABCD: Signals
	Slide 21: Summary

