I
h

Processes
waitpid(), errno

Instructor: Linyi Li
Slides adapted from Dr. B. Fraser

1) How can a parent process wait for a child?

2) How can we know what errors have happened?

Waliting for a child:
wait()

wait()

~-Family of calls; we'll usually use waitpid(),
but refer to them as just wait()

pid_t pid = fork();
if (pid !1=0) {

// Parent waits for child process to finish
if (waitpid(pid, ...) ==-1) {
// Exit on error

}

} else {
// Child does something.. exec?

1/12/2026

wait(2) System Calls Manual wait(2)
NAME
wait, waitpid, waitid - wait for process to change state
LIBRARY
Standard C library (libc, -1lc)
TR Alot to L_mdlerstand |I|? just a
#include <sys/wait.h> sihgle syscail:
What are these options?
pid_t wait(int *_Nullable wstatus);
pid_t waitpid(pid_t pid, int *_Nullable wstatus, int options);
DESCRIPTION

All of these system calls are used to wait for state changes in a
child of the calling process, and obtain information about the
child whose state has changed. A state change 1is considered to
be: the child terminated; the child was stopped by a signal; or
the child was resumed by a signal. In the case of a terminated
child, performing a wait allows the system to release the re-
sources associated with the child; if a wait 1is not performed,
then the terminated child remains in a "zombie" state (see NOTES
below).

Parts of waitpid()

pid_t waitpid(pid_t pid, int *_Nullable wstatus, int options);

s pid

o Wwstatus
~pointer to an int to store..

- Nullable tells reader OK to be NULL

« oOptions
~-we'll leave as 0; can specify non-blocking (don’t wait)
WNOHANG

1/12/2026

wstatus

-Calling code (e.g., main())

~waitpid() given a pointer to this space
~walitpid() writes an answer into that space

. Effectively, main() declares a variable so waitpid() has
somewhere to write info; called an.. output parameter

pid_t pid = fork();
if (pid) {
int wstatus = 0;
if (waitpid(pid, &wstatus, 0) ==-1) {

perror("waitpid");
exit(EXIT_FAILURE);
}

}

1/12/2026

wait() Status Check Macros

(wstatus(): is a complicated value)
~-Normally: exit() or return from main

if (WIFEXITED(wstatus)) {
printf("Reason: %d\n", WEXITSTATUS(wstatus));

}

~-Terminated by Signal?

if (WIFSIGNALED(wstatus)) {
printf("Terminated by signal # %d\n",

WTERMSIG(status));

1/12/2026

Activity: walit()

o (10 mins)
~Creates a child process

-Child process runs ‘Is -a -I

~Parent process waits for the child process to terminate using
waitpid()

-If child exits normally, print the exit status.

-OK to reuse previous code examples from class.
-Use execl(); pass in arguments separately

See code slide: “waitpid() on child”

1/12/2026

waitpid() on child

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <wait.h>

int main() {
pid_t pid = fork();

if (pid) {
int wstatus = 0;
if (waitpid(pid, &wstatus, 0) ==-1) {
perror("waitpid");
exit(EXIT_FAILURE);
}

if (WIFEXITED(wstatus)) {

printf("Child done with exit status: %d\n", WEXITSTATUS(wstatus));
} else {

printf("Child did not exit normally.\n");
}

} else {
if (execl("/usr/bin/ls", "/usr/bin/ls", "-a", "-I", NULL) == -1) {
perror(“execl");
exit(EXIT_FAILURE);

}
}

return O;

Zombies and Orphans

Zombies

-OS retains some state information of terminated processes
(so parent can find out reason for exiting)

-This takes up some memory.
-Calling walt() on a terminated process frees this memory.

Process state where child process terminates

(It's dead, but not completely)

-Having many zombies uses kernel resources;
so important to always wait() on child process.

1/12/2026

12

Orphans

« Orphan
-This is the state where..

~-Orphan processes no longer have a parent process.

-Orphan child process becomes a child process of init

-init calls wait() on all child processes
29

& .‘ “\

1/12/2026 Generate image: https://deepai.org/ 3

ABCD: wait()

« Which of the following is true about wait()?

(a)wait() takes care of orphans.

(b)wait() combats the spread of zombies.
(c) wait() is a replacement for “sleep() .

d) wait() allows child process to get input from

1/12/2026

14

-

What went wrong?
errno

man errno

man errno
-What do you notice about it?

~-Description

-When is it useful?

~What is its type?

~How can my program get access to it?

1/12/2026

16

errno & perror

« €errno is an integer variable that is..

~Adds more information about which error has occurred.
It is defined in

-C can print an explanation for you from just the errno
using perror(“your message here”)

if (somecall() ==-1) {
if (errno == EACCESS) {
printf("You don't have access.\n");
} else {

perror("somecall() failed")

}
}

« errno is similar to wstatus from wait():

~Status code set by a system call if there’s an error.
1/12/2026

17

Demo: fork-bomb with errors

#include <errno.h>
#include <stdio.h>

¢ #include <unistd.h>
~man fork .
. INTt Main

Checkout possible while (1) {
errno values if (fork() == -1) {

. char *str = NULL;

switch (errno) {
° case EAGAIN:
Taal = "EAGAIN";

~ulimit -S -u 100 ;tr;akf
fork-bomb with error output case ENOMEM:

str ="ENOMEM";
break;
case ENOSYS:
str = "ENOSYS";
break;
default:
break;
}
perror("fork");
printf("%s\n", str);

1/12/2026

Summary

wait(), waitpid()
-Pass &wstatus to find out why child terminated.

~Terminated process becomes a zombie until waited on.
- Terminating the parent creates orphans processes.

. errno
-Print error message to screen with perror().

1/12/2026

19

	Slide 1
	Slide 2: Topics
	Slide 3
	Slide 4: wait()
	Slide 5: man 2 wait
	Slide 6: Parts of waitpid()
	Slide 7: wstatus
	Slide 8: wait() Status Check Macros
	Slide 9: Activity: wait()
	Slide 10: waitpid() on child
	Slide 11
	Slide 12: Zombies
	Slide 13: Orphans
	Slide 14: ABCD: wait()
	Slide 15
	Slide 16: man errno
	Slide 17: errno & perror
	Slide 18: Demo: fork-bomb with errors
	Slide 19: Summary

