
Processes
waitpid(), errno

Slides 2cCMPT 201 11/12/2026

Instructor: Linyi Li

Slides adapted from Dr. B. Fraser

Topics

1) How can a parent process wait for a child?

2) How can we know what errors have happened?

21/12/2026

Waiting for a child:
wait()

31/12/2026

wait()

⚫ wait()
..

−Family of calls; we'll usually use waitpid(),

but refer to them as just wait()

⚫ Common usage

pid_t pid = fork();
if (pid != 0) {

 // Parent waits for child process to finish
 if (waitpid(pid, ...) == -1) {
 // Exit on error
 }

} else {
 // Child does something.. exec?
}

41/12/2026

man 2 wait

A lot to understand in just a

single syscall!

What are these options?

51/12/2026

Parts of waitpid()

⚫ pid
−..

⚫ wstatus
−pointer to an int to store..

−_Nullable tells reader OK to be NULL

⚫ options
−we'll leave as 0; can specify non-blocking (don’t wait)

e.g., WNOHANG

pid_t waitpid(pid_t pid, int *_Nullable wstatus, int options);

61/12/2026

wstatus

⚫ waitpid() takes a pointer for wstatus
−Calling code (e.g., main())
..

−waitpid() given a pointer to this space

−waitpid() writes an answer into that space

⚫ Effectively, main() declares a variable so waitpid() has
somewhere to write info; called an..

pid_t pid = fork();
if (pid) {
 int wstatus = 0;
 if (waitpid(pid, &wstatus, 0) == -1) {
 perror("waitpid");
 exit(EXIT_FAILURE);
 }
}

output parameter

71/12/2026

wait() Status Check Macros

⚫ Why did the child terminate?
(wstatus(): is a complicated value)

−Normally: exit() or return from main

−Terminated by Signal?

if (WIFEXITED(wstatus)) {
 printf("Reason: %d\n", WEXITSTATUS(wstatus));
}

if (WIFSIGNALED(wstatus)) {
 printf("Terminated by signal # %d\n",
 WTERMSIG(status));
}

81/12/2026

Activity: wait()

⚫ (10 mins) Write a program that:
−Creates a child process

−Child process runs `ls -a -l`

−Parent process waits for the child process to terminate using

waitpid()

−If child exits normally, print the exit status.

⚫ Hints:
−OK to reuse previous code examples from class.

−Use execl(); pass in arguments separately

See code slide: “waitpid() on child”

91/12/2026

waitpid() on child

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <wait.h>

int main() {
 pid_t pid = fork();

 if (pid) {
 int wstatus = 0;
 if (waitpid(pid, &wstatus, 0) == -1) {
 perror("waitpid");
 exit(EXIT_FAILURE);
 }

 if (WIFEXITED(wstatus)) {
 printf("Child done with exit status: %d\n", WEXITSTATUS(wstatus));
 } else {
 printf("Child did not exit normally.\n");
 }
 } else {
 if (execl("/usr/bin/ls", "/usr/bin/ls", "-a", "-l", NULL) == -1) {
 perror("execl");
 exit(EXIT_FAILURE);
 }
 }

 return 0;
}

101/12/2026

Zombies and Orphans

111/12/2026

Zombies

⚫ What happens when an application terminates?
−OS retains some state information of terminated processes
(so parent can find out reason for exiting)

−This takes up some memory.

−Calling wait() on a terminated process frees this memory.

⚫ Zombie
Process state where child process terminates
..

(It's dead, but not completely)

−Having many zombies uses kernel resources;

so important to always wait() on child process.

121/12/2026

Orphans

⚫ Orphan
−This is the state where..

−Orphan processes no longer have a parent process.

⚫ Linux handling of Orphan Processes
−Orphan child process becomes a child process of init

−init calls wait() on all child processes

Generate image: https://deepai.org/131/12/2026

ABCD: wait()

⚫ Which of the following is true about wait()?

(a) wait() takes care of orphans.

(b) wait() combats the spread of zombies.

(c) wait() is a replacement for `sleep()`.

(d) wait() allows child process to get input from parent.

Answer: B

141/12/2026

What went wrong?
errno

151/12/2026

man errno

⚫ Run:
man errno

−What do you notice about it?

⚫ Look at:
−Description

−When is it useful?

−What is its type?

−How can my program get access to it?

161/12/2026

errno & perror

⚫ errno is an integer variable that is..

−Adds more information about which error has occurred.

−It is defined in errno.h

−C can print an explanation for you from just the errno

using perror(“your message here”)

⚫ errno is similar to wstatus from wait():
−Status code set by a system call if there’s an error.

if (somecall() == -1) {

 if (errno == EACCESS) {
 printf("You don't have access.\n");
 } else {

 perror("somecall() failed")
 }
}

171/12/2026

Demo: fork-bomb with errors

⚫ fork() sets errno on failure
−man fork
Checkout possible

errno values.

⚫ Demo?
−ulimit -S -u 100

fork-bomb with error output

#include <errno.h>

#include <stdio.h>
#include <unistd.h>

int main() {
 while (1) {
 if (fork() == -1) {

 char *str = NULL;
 switch (errno) {
 case EAGAIN:

 str = "EAGAIN";
 break;
 case ENOMEM:

 str = "ENOMEM";
 break;
 case ENOSYS:

 str = "ENOSYS";
 break;
 default:

 break;
 }
 perror("fork");

 printf("%s\n", str);
 }
 }

} 181/12/2026

Summary

⚫ Waiting on your children:
wait(), waitpid()

−Pass &wstatus to find out why child terminated.

−Terminated process becomes a zombie until waited on.

−Terminating the parent creates orphans processes.

⚫ Use errno to find out info

−Print error message to screen with perror().

191/12/2026

	Slide 1
	Slide 2: Topics
	Slide 3
	Slide 4: wait()
	Slide 5: man 2 wait
	Slide 6: Parts of waitpid()
	Slide 7: wstatus
	Slide 8: wait() Status Check Macros
	Slide 9: Activity: wait()
	Slide 10: waitpid() on child
	Slide 11
	Slide 12: Zombies
	Slide 13: Orphans
	Slide 14: ABCD: wait()
	Slide 15
	Slide 16: man errno
	Slide 17: errno & perror
	Slide 18: Demo: fork-bomb with errors
	Slide 19: Summary

