Processes:
sleep()

Instructor: Linyi Li
Slides adapted from Dr. B. Fraser

Topics

1) What specifically is a running program??
2) Writing C code to call a syscall: sleep()
)
)

3) Using man pages.
4) Fun with some C pointers.

1/11/2026

Pair Programming

~-You and a partner will use
one computer to write code

~Show:
(by Code.org)

~Driver typing the code
~-Navigator look up the man page
-Both are creating the code!

(show 30s)

1/11/2026

https://youtu.be/vgkahOzFH2Q?si=c3SLrS9vjrzGS8Ub
https://youtu.be/PdKup_ybJro?si=DXz4qAMG9CHa03e8
https://youtu.be/vgkahOzFH2Q?si=c3SLrS9vjrzGS8Ub
https://youtu.be/PdKup_ybJro?si=DXz4qAMG9CHa03e8

Process

Process

~Basically a..
-But unless you run it, it's just a file!

-Basically a..
(not quite that simple; we'll learn more)

1/11/2026

Program in Memory

‘
Registe
. Program (the executable) stored on disk.
-Slow data access (fetch) speed due to distance,

spinning drive, etc.
-CPU cannot access bytes

without loading them into memory.

Memory Hierarchy

-S0, a program must be in memory to run.

Hard Drive Data loaded into lllllllll

MaMnEISH Bytes in Memory:

1/11/2026

Start Execution

o Area for
instructions

iIn RAM for the program to run

-load the machine code from the program’s file
on disk into memory.

-make part of memory space for data
(variables, ...). More later!

Areas(s) for
data

(more later!)

—start executing the program from memory
(makes it a process!)

Areas of
program’s
memory space
1/11/2026

Controlling a Process

-Programmers use system calls (syscalls) to control processes.

. syscalls

—.. fork()

Create a new process by cloning current one.
_. exec()

Replace current process with another executable.
(family of different calls, but do the same thing).

_wait()
Wait until a created process finishes its work.

1/11/2026

ABCD: Process

. What is the difference between
a process and a program?

(a) A process is a program loaded into memory and running.
(b) A program is a process loaded into memory and running.

(c) A process is loaded from RAM to the hard drive by the OS.
(d) A program is loaded from RAM to the hard drive by the OS.

1/11/2026

F
A

Coding &
Process Activity

Ready to Code

-A terminal for Coding:

.Launch the CMPT 201 container:
docker start -ai cmpt201

-Make a folder for our work
mkdir -p ~/lecture/02-forkexecwait

-A terminal for 'man' page:

.connect to the already running container:
docker exec -it cmpt201 zsh --login

-Run
man 3 printf

If not yet downloaded docker image, first run:
docker create -it --name cmpt201 ghcr.io/sfu-cmpt-201/base # if needed
1/11/2026

11

Activity: Hello C World!

cd ~/lecture/02-forkexecwait/
nvim hello.c

“clang hello.c’

~This builds executable a.out; run it:
Ja.out

~Set executable’s name:
clang hello.c -0 hello

e (3 mins)

1/11/2026

#include <stdio.h>

int main()

I
L

printf("Hello world!\n");

AN
1

12

Activity: sleep()

o (5 mins)

-Check the man page for sleep():
$ man 3 sleep

(Without the 3, it will give you the Linux sleep command)

-Connect to running container using docker exec...’

~btop is a good tool to visualize parent/child processes

1/11/2026

13

sleep() Solution

sleep.c > ...

¢ btop #include <stdio.h>

~Use tree view (press e) N

~-Each process has a parent |

(except init and kthreadd; not ;o

shown in containers). | e e 1401 ¢
~Our container’s zsh runs a.out rrush(sedout)s o

sleep(2);

1
r

printf("\n");
printf("DONE\n");

proc | filter per-corereversetre cpu lazy proc - filter per—core - reverse - tre pid
Tree: User: MemB Cpuk | Tree: User: MemB Cpu%
[-1-1 systemd (init) root 14M 0.0 I [-]-128 zsh cmpt+ 6&6.8M 8.8
}— 59774 packagekitd root 7@M 0.0 694 btop cmpt+ 6.2M, 8.5
[+]1-15 system brian 3.4G e L7 — 66 zsh cmpt+ 6&6.8M 6.8
59665 root 1 cmpt+
l: 675 root
On Linux shows init In container, no init

1/11/2026 14

ABCD: Docker

« Which command connects to
an already running Docker container?

« Which command downloads the Docker container?

« Which command launches the Docker container?

docker start —-ai cmpt201

docker exec -1t cmpt201 zsh --login

docker git clone github.com/sfu-cmpt-201/base

docker create -it —--name cmpt201 ghcr.io/sfu-cmpt-201/base

1/11/2026 15

-

Reading a
man page

Man Page

—our primary way to learn functions/system calls for systems
programming.

-1t takes practice to effectively read a man page!
man <da-thing>
-e.0.,, manls’, mancd

~Most relevant sections for CMPT 201:
-man 1: General commands ., man 1ls
-man 2: System calls , man 2 fork

-man 3: C standard library functions , man 3 printf
1/11/2026

17

atoi(3) Library Functions Manual atoi(3)

Learning a Function M

atoi, atol, atoll - convert a string to an integer

LIBRARY
* Standard C library (libc, -1c)

-I know a syscall/function; SYNOPSIS
how do | use it?

#include <stdlib.h>

int atoi(const char *nptr);
long atol{const char *nptr);

* long long atoll(const char *nptr);

1)IS tr]is; \A/r]eat I \Alear1t’? Feature Test Macro Requirements for glibc (see fea-

. ture_test_macros(7)):
2)How do | call it?
atoll():

ES)\/\/f]Eﬂt (j()EBS; it g}i\/EE rT]EB’? _ISUTTQIEDSEEEC <= 2.19: */ _B5D_S0URCE || _SVID_SOURCE
4-)I--k)vv (:Eir] It GJ() \A/rC)r]SJ’? DESCRIPIﬁzﬂatui{} function converts the initial portion of the
(EerrT1()’ fEBEitLJrEB teesst) string pointed to by nptr to int. The behavior is the

strtol(nptr, NULL, 1@);
except that atei() does not detect errors.
The atol{) and atoll({) functions behave the same as

atoi(), except that they convert the initial portion of
the string to their return type of long or long long.

RETURN VALUE
1/11/2026 The converted value or @ on error.

atoi(3) Library Functions Manual atoi(3)

Learning a Function ™

atoi, atol, atoll - convert a string to an integer

1) LIEBRARY

—~Read Description section
_ Skim fast for relevant part

Standard C library (libc, -1c)

SYNOPSIS
#include <stdlib.h>

(You'll need this skill!) int atoi(const char *nptr);

long atol{const char *nptr);
long long atoll(const char *nptr);

) Feature Test Macro Requirements for glibc (see fea-

_Read SynOpS|S (prototype) ture_test_macros(7)):
~Check header files & el

_IS0C99_SOURCE

/* glibc <= 2.19: */ _BSD_SOURCE _SVID_SOURCE
return type e :
DESCRIPTION
——(:r]fa(:k(Eir l]rT]EEr]tSS The atoi() function converts the initial ortion of the
P
. string pointed to by nptr to int. The behavior is the
(in and out) same as

strtol(nptr, NULL, 1@);

3)
~Read Return Value section

except that atei() does not detect errors.

The atol{) and atoll({) functions behave the same as

__F)Ea)/ Eittf;f]ti()r] t() ()LJtF)LJt atoi(), except that they convert the initial portion of
] the string to their return type of long or long long.
parameters (pointers)!
RETURN VALUE

1/11/2026 The converted value or @ on error.

Learning a Function

4)
(errno, feature test)
~What errors possible?

Read Errors (more later)

-Do you need to a
feature test?

., man 3 srand
must define POSIX C SOURCE

Feature Test Macro Requirements for glibc (see @)
O:
Since glibc 2.24:
_POSIX_C_SOURCE >= 199506L
glibc 2.23 and earlier
_POSIX_C_SOURCE
ERRORS
EFAULT Problem with copying information from user space.

EINTR The pause has been interrupted by a signal that was
delivered to the thread (see signal(7)). The re-
maining sleep time has been written into *rem so
that the thread can easily call nanosleep() again
and continue with the pause.

EINVAL The value in the tv nsec field was not in the range
[@, 999999999] or fv sec was negative.

atoi(3) Library Functions Manual atoi(3)
NAME
atoi, atol, atoll - convert a string to an integer
LIBRARY
Standard C library (libc, -1c)
SYNOPSIS
#include <stdlib.h>
int atoi(const char *nptr);
long atol{const char *nptr);
long long atoll(const char *nptr);
Feature Test Macro Requirements for glibc (see fea-
ture_test_macros(7)):
atoll():
_I50C99_S0URCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE
DESCRIPTION
The atoi() function converts the initial portion of the

string pointed to by The behavior is the

same as

nptr to int.

strtol(nptr, NULL, 1@);
except that atei() does not detect errors.
The atol{) and atoll({) functions behave the same as

atoi(), except that they convert the initial portion of
the string to their return type of long or long long.

VALUE
The converted value or @ on error.

ABCD: Review C Pointers

[T O U N R

0O =l

WO

1/11/2026

#include <stdio.h>
#include <stdlib.h>

int make_abs_get product(int *pA, int *pB)

I
L

*pA = abs(*pA);
*pB = abs(*pB);
return *pA * *pB;

main()

int w = -4;

int h = 5;

int area = make_abs get product(&w, &h);
printf("%d x %d = %d\n", w, h, area);

« What does this output?

(Formatting cleaned up)

21

Review C Pointers

#include «<stdio.h>
#include <stdbool.h>»
#include <string.h>

. char™ x

. . : #include <ctype.h>
-X IS a..pointer-to-a-pointer.

E bool find_first_digit(char® data, int n, char®* ppdigit)

CO =~ v U1 B W k=

{
for (int 1 = 8; 1 < n; i++) {
Used for 9 if (isdigit{data[i])) {
output parameters 10} *ppdigit = &data[i];
11 return true;
12 1
e N }
-Calling code passes in.. B return false;
15}

address of T
their pointer e mein0)

_FunCtion Sets Where 19% char*® data = "I wa5 h3r3!\n";
. : 20 char® pfirst digit = NULL;
that pointer points. 21
22 if (find first _digit(data, strlen(data), &pfirst digit)) {
23 printf("Found digit: %c\n", *pfirst_digit);

24 + else |

25 printf("Found no digits.\n");

26 1
1/11/2026 27)

Summary

~Each process has its own Memory Space

-Use man pages to lookup functions
~-Pointers and pointers-to-pointers used as output parameters

~Use multiple terminal tabs/windows
-Code a little at a time

« sleep() puts function to sleep

1/11/2026

23

	Slide 1
	Slide 2: Topics
	Slide 3: Pair Programming
	Slide 4
	Slide 5: Process
	Slide 6: Program in Memory
	Slide 7: Start Execution
	Slide 8: Controlling a Process
	Slide 9: ABCD: Process
	Slide 10
	Slide 11: Ready to Code
	Slide 12: Activity: Hello C World!
	Slide 13: Activity: sleep()
	Slide 14: sleep() Solution
	Slide 15: ABCD: Docker
	Slide 16
	Slide 17: Man Page
	Slide 18: Learning a Function
	Slide 19: Learning a Function
	Slide 20: Learning a Function
	Slide 21: ABCD: Review C Pointers
	Slide 22: Review C Pointers
	Slide 23: Summary

