A Tour of
Computer Systems

Instructor: Linyi Li
Slides adapted from Dr. B. Fraser

Topics

1

) For a program to run, what is needed?
2) How does a computer’'s hardware work?
)
)

3) What does the OS Kernel do?
4) How does a program interact with the OS?

1/6/2026

-

Systems Programming

OS Stack

. Let's discuss the ferminology necessary for the course
and generally for computer systems.

. OS Stack
—. Layers of services, each building on lower layer

Applications _
Syscall interface
Kernel an Akl

Hardware

OS Stack :
CMPT 201 deals extensively

with the syscall interface

1/6/2026

Systems Programming

o Systems programming: ...

-Low-level languages (e.g., C, C++, Rust) give you the ability to do
systems programming, e.g., .. Faw memory access.

(Python and Java don't allow you to do that)

-Don't typically need a systems programming language, unless it
needs high performance.

-Choose a language that fits the target program's goals.

. Let's look at stack bottom up.
1/6/2026

Hardware Layer

Applications

Kernel

Hardware

OS Stack

1/6/2026

Components in Computing

Handled by the CPU

Handled by memory (main memory (RAM) and storage)

. atb=>c
-What is the computation?

~What is the data?

1/6/2026

PC Motherboard

~Current fundamental model of computer design.
-Fetch data from memory to provide to the CPU.
« Hardware components:

CPU, memory,
and |/O devices.

processor socket

DRAM slots

PCI bus slots

1/6/2026 8

Evolution of CPU: Moore’s Law

40 Years of Microprocessor Trend Data

7 F /
10 T |
' M Transistors
6
10" Blg Gap (thousands)
il | s Single-Thread
10 b -.2t|mes/ year |performance .
(2.5times/5Syears) |(SPecINT x 107)
10° | Frequency (MHz)
a Performance
. (Watts)
§ L =
e % = - Number of
ol &8 t | - Logical Cores
10Y F ‘ - B e N LENE WINE ¢ - =
1 1 1 1
1970 1980 1990 2000 2010 2020 year

Pre early 2000: X 2 every 18 months

Post 2005: X 2 every 18 months

1/6/2026

Evolution of Memory

-CPU was getting faster,
so memory access had to get faster too.

-Speed of memory access limited by
.. memory chip speed, and speed of light!

-Memory is far away from CPU, and much too slow

1/6/2026

10

CPU vs Memory Speed

A very small memory inside a CPU;
hold data items from memory.

Very close to CPU, so very fast access to data

~Much larger in size than registers,
but much smaller than memory.

~Quite close (physical distance) to CPU,
so.. faster access times.

-Nowadays processors have many caches:
L1 cache ~512KB (smallest, closest, fastest)
L2 cache ~8MB

L3 cache ~32MB (large, slowest)

1/6/2026

« Desktop CPU today
-One processor chip

~Multiple Cores
-Shared & private caches |/ Core

Queue, Uncore

& I/0
LU

— ———————

511 181 R R s iR AR
: b=t 120 1t tns StiRtamttnginia: S jttd i

- w i
R4

pre——
e
Rl
,.+~ | .
v .

= Shared :..Ea%ﬁ Core
L 3iCache i

F‘*“ Core 1 =

== i Core

Sl SR CERAS

o t

iy 1 5, TR
e SRR

S Memory Controller .- -

Memory Hierarchy

a huge amount of (cheap) fast memory.
-Intelligently bring data in from large-slow devices

(hard drives) into small-fast devices (memory, cache).

Fast! CPU Small!
Reqister

Cache (L1, L2, L3)

Access Speed

1/6/2026 13

Memory Hierarchy

Bigger size typically means more expensive
(size correlates with price).

faster means closer to CPU.

"Commit" means moving data from memory to disk;

l.e., changing state of data from temporary to permanent.

. €.9., gitcommit.

SSD vs. HDD vs. tape: SSD's fastest but least reliable.
A tape is slowest but most reliable and lasts longer.

1/6/2026

14

CPU Architectures

« Instruction Set Architectures (ISA)

-Compiler translates C programs into machine instructions.
— : X806, ARM, RISK-V ("risk-five")

~-For CMPT 201, we care most about
32-bit vs 64-bit because it..

1/6/2026

15

ABCD - Pointers

. What is a pointer in your C program??

a) A memory address.
b) A variable storing a memory address.

c) The data stored in an array.
d) The address of the current instruction.

« Which of the following is true about the following code?
char* pLetter;
long long™ pCounter;

a) sizeof(pLetter) < sizeof(pCounter)
b) sizeof(pLetter) > sizeof(pCounter)

c) sizeof(pLetter) == sizeof(pCounter)
d) Depends on if the system is 32-bit or 64-bit

1/6/2026

16

32 vs 64 bit Register Size Implications

In 32-bit, can do 6.4-bit computation in multiple operations.

(32-bit uses 32-bit pointers & 64-bit uses 64-bit pointers).

oI OxF523 2352 9553 A354

Address space size :
Pointer size controls the memory address space size

Pointer size affects # physical wires connecting to memory.
~With 64-bits:
need 64 wires to transfer address from CPU to memory.
need 64 wires to transfer data from memory back to CPU

1/6/2026 17

Memory

0x0000 0000
OxF100 1234
OXFFFF FFFF

Individual bytes

. (1 byte = 8 bits).

-The number of bits stored in a CPU’s register.

~Addresses are 32-bits:
0x0000 0000 to OxFFFF FFFF

-(Data is retrieved from memory 32-bits at a time (4 bytes)

but memory addresses are still byte addresses)
1/6/2026

18

ABCD: Pointer Values

0x0000 0000
OxF100 1234

OXFFFF FFFF

Individual bytes

. Which of the following is true?
char ch = ‘A’;
char® pLetter = &ch

a) pLetter ==
b) pLetter == 0x0000 0O00A

c) pLetter == OxF100 1230

d) pLetter == OxF100 1234

1/6/2026

19

ABCD - Memory

. Which of the following is true?

a) 1,000 = MB, 1,000,000 = KB, 1,000,000,000 = GB
b) 1,000 = GB, 1,000,000 = MB, 1,000,000,000 = KB

1/6/2026

c) 1,000 = KB, 1,000,000 = MB, 1,000,000,000 = GB
d) 1,000 = GB, 1,000,000 = KB, 1,000,000,000 = MB

B<KB<MB<GB<TB

If memory (RAM) stored just 16 bytes (16 locations),
how many bits do we need in our address?

a) 2-bits
b) 4-bits

c) 8-bits
d) 16-bits

20

Why 64-bits?

~-Has a 64-bit register

~-Has a 64-bit pointer

_Allows us to.. address 2% different bytes in memory.
2%4=16,000,000,000 GB = 16 Exabytes (VERY large)

. In a 32-bit architecture, how much memory can the CPU
access?

a) 65,526 bytes
b) 2,147,483,648 bytes

c) 4,294,967,296 bytes
d) 18,446,744,073,709,551,616 bytes

1/6/2026 21

1/6/2026

Kernel Layer

Applications

Kernel

Hardware

OS Stack

22

What is the OS?

Main part that actively manages resources.

-Supporting tools
such as GUI, command line;
These are what differentiates Linux distributions (“distros™)

1/6/2026

23

What does a Kernel do?

—..Resource management
.many programs want to access the hardware at the same time
-kernel manages (mediates) access

the kernel controls programs (running, stopping, etc.).

—--Protection
the kernel provides protection (isolation) for users and programs.

. , users can’t access each other’s data
..0., programs can't interfere with each other’s execution.

1/6/2026

24

Event-Driven

-Generally, the OS lets other programs run and waits for something it
needs to do.

~The kernels is.. event driven:
It responds to events.

-..Hardware interrupts
a hardware event like a mouse click, or network packet received

a user-space-application generated call to the kernel

e.g., application asking kernel to printf() to the screen.
__Signals

a software interrupt that announces an event to a process
e.g., SIGINT = ctrl+c, SIGSEGV = segmentation (page) fault

1/6/2026 25

User Mode vs. Kernel Mode

-Kernel Mode runs the OS kernel;
allows full privilege and full access to the hardware.

Often called "Ring 0"
~-User Mode runs applications;

Instructions that allow direct access to hardware
access to certain regions of memory (kernel memory)

« Modern CPUs run in one of those two modes at a

. ABCD: Which best explains why we [Naltata
need a user mode? (b) Efficiency

(c) Null pointers
d) Abstraction

1/6/2026

given moment.

26

Root user (aside)

-The “mode” (privilege level of code) is different than the user-level
-The root user is still a user, but with full admin privileges
-Root can run programs and access files that normal users cannot.
-Root user often called a super user.
~-Root user cannot access kernel memory or protected instructions.

1/6/2026 27

Inux Kernel map
networking

la}f‘é‘;fst“mah“es human interfaces system processing memory storage
HI char devices _ interfaces core m processes memory access files & directories sockets access
user System Call Interface system files : s o sy3_brk = access
5 System DR sys_vfork ST
L % » s_signal SYS_Imap shm vm_ops
space e e 7= e | 7 oma
N =) repser ey gys joctl

e 10

interfaces s
"\y cdzv: MAD sys epoll crente e |
it ‘ { address Familie,ﬁ

system calls
and system files = }Bﬁ
- - ode SYs_Teboot
betiuit _sockgems ¢

virtual

A v

storage controllers network controllers

' user peripherals romen 1/O £ CPU memory
elecn‘onlcs S km:;[“m e o 10 parts AcP (xﬁl;m registers APIC cm; RAM DMA MMU SCSI SATA Ethernet WiF
https://makelinux.github.io/kernel/map/

1/6/2026

Important Terms in the Kernel

ernel map
la‘f‘;‘i}?“““m“ human interfaces system processing memory storage networking
T HI char devices ..., interfaces core ! processes . MEemory access ' files & directories . sockets access
Eelesrie leerne] s gl ¢ ﬁﬂ: CL B (=
System E‘I.I Inberfaer syslem Eles w9 kill ek . . dACCESE - e
G gl kane . Py ; sys_sockat

v
usel o ni
lisrcsyseals b -
[TTEe—) "': '
wyalh
T lirase L.iu
[" ay

space frser
inferfaces .ot =y

systam calls
and systen filas

Device drivers: €vVery device needs a device driver to control it
network card device driver talks to hardware to send/receive data

to/from the physical network.
Covered
later

Covered
later

-Processes, threads, synchronization, and scheduling

~Virtual memory, physical memory, and paging
29

1/6/2026

Important Terms in the Kernel (cont)

ernel map
la‘f‘;‘i}?“““m“ human interfaces system processing memory storage networking
T HI char devices e interfaces core femel hCEEDE . MEmMOTry access ~ files & directories . sockets access
Elesrr kerrzlapic ﬁﬂ: L & et
System Call Inerlace sxakem Eles o il ik - ACCEES - e
E¥E_axscue JI'_ sl ke 2 Py : EYE

v
usel o ni
lisrcsyseals b -
[TTEe—) "': '
wyalh
T lirase L.iu
[" ay

space frser
inferfaces .ot =y

systam calls
and systen filas

-File systems, and VFS (Virtual File System).

data structures and operations that a file system should support

, read and write.
-By looking like a normal file, many tools can seamlessly work with it

, ~cat /proc/cpuinfo’
Covered
later

~Sockets, TCP, UDP, and IP

1/6/2026

30

ABCD - Kernel

. Which of the following is true?

(a) The root user runs programs in kernel mode.
(b) Syscalls allow the kernel to execute user-level applications.

(c) A hardware interrupt is generated when dereferencing a null
pointer.

(d) User mode prevents applications from executing privileged
Instructions.

1/6/2026

31

1/6/2026

Applications Layer

Applications

Kernel

Hardware

OS Stack

32

Lifetime of a Program
(briefly)

/‘/\\\\
Where do)
applications)
come from?

1/6/2026

Source Code

1 Compilation
Executable
machine code

1 Memory Loading

Running Program

33

Compilation vs. Interpretation
(briefly)

-Compilation (e.g., C, C++)
~Interpretation (e.g., Python, Bash)
. Performance

-Compilation has better performance:
it directly generates machine code to execute.

machine code for one specific ISA
can't run x86 executable on ARM machine

~Interpretation is slower, but same script can run anywhere there is
an interpreter.

1/6/2026

34

Intermediate Representation
(briefly)

~Java bytecode, LLVM bitcode: architecture-neutral ISAs.

low-level instructions similar to x86 or ARM instructions but
they do not target specific CPUs.

. Steps to using IR
1. Compile source code to low-level IR instructions

2. Use a backend compiler to compile IR down to an
architecture-specific executable

« Rust and Go compilers generate portable LLVM bitcode
(in IR), and then use LLVM backend compiler to
generate machine code for specific ISA

1/6/2026

35

POSIX

(briefly)

« POSIX=..
-A standard for (user-level) software portability across different OSs.

-Includes programming interface (file /O, C standard library, etc.)
and shell utilities

-We see it in C to: specifies what features we need:
#define _POSIX C_SOURCE 200809L

#include <string.h>
char #strdup(const char *s);

char #strndup(const char *s, size_t n);
char #strdupa(const char *s);
char #strndupa(const char %5, size_t n);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

strdup():
_SVID_SOURCE || _BSD_SOURCE || _XOPEN_SQURCE >= 500 || _XOPEN_SOURCE &&

_XOPEN_SOURCE_EXTENDED
| /* Since glibc 2.12: */J| POSIX_C_SOURCE >= 200809L

strndup():

nce glib 0.
POSIX_C_SOURCE >= 200809L8|| _XOPEN_SOURCE >= 700

_GNU_SOURCE
strdupa(), strndupa(): _GNU_SOURCE

Image: https:/Awww.linkedin.com/pulse/understanding-posix-standard-
1/6/2026 bridges-operating-systems-logzeta-1bl4f/ 36

AB|

« ABI=..

. APl = .. Application Programming Interface
~An API is at the code level:

Your code calls or accesses the functions of the API, such as
provided by a library.

-An ABI is an interface for a binary (an executable) that an OS
defines.

— . Windows ABI is different from Linux ABI.

Cannot copy a Windows binary (" .exe’) to a Linux machine and run it
(and vice versa).

1/6/2026 37

Virtualization

Virtualization of Traditional OS Stack

part(s) of our OS stack to be swapped out
~Lets us be much more flexible!

~-Software can control the environment:
"Spin up 3 virtual machines to host new databases”

. .. HAypervisor:

software that provides virtualization.
~Also called the Virtual Machine Monitor (VMM)

~Hypervisor can run at different levels of our OS stack, giving
different levels of flexibility

1/6/2026

40

On Hardware

-VMM..

~This is often used in a data center environment.

VM #1 VM #2 VM #3
Apps Apps Apps

Kernel Kernel Kernel

VMM
Hardware

1/6/2026

41

On Kernel

-A VMM is an application running atop a kernel, along with other
applications.

-The VMM creates/runs/manages VMs.

-This is often used in a desktop environment,
. VMWare Workstation, VirtualBox, QEMU.

VM #1 VM #2
Apps Apps
Kernel Kernel

Kernel

Hardware

1/6/2026

42

Containerization

~-Containerization creates a container not a virtual machine.
~Container includes.. an isolated set of applications and data.
-Uses the same OS kernel as rest of the system

-Uses Linux features for isolation: process isolation (namespaces), resource
control/isolation (cgroups), etc.

~This is the most popular form of virtualization these days, e.g., Docker, Podman.

Container #1 Container #2

Apps VM #3
Containerizater

Kernel

Hardware

1/6/2026 43

ABCD - Virtualization

« Which of the following is a major benefit of virtualization?

(a) Allows user level applications to call the kernel.

(b) Allows parts of the OS stack to be swapped out under software
control.

(c) Allows the kernel to control different pieces of hardware when
they are connected at runtime.

(d) Allows application to run without using an OS kernel.

1/6/2026

44

Summary

-Hardware, Kernel, Application.

« Memory hierarchy
~allows programs to access large memories quickly

« Pointers hold addresses,
-32 vs 64 bits limit how much memory we can access

. Kernel mode gives OS kernel access to all resources
~-User mode limits what an application can do.

» Applications use the OS’s ABI to use services

« Virtualization allows parts of the OS stack to be swapped out
under software control.

1/6/2026

46

	Slide 1
	Slide 2: Topics
	Slide 3
	Slide 4: OS Stack
	Slide 5: Systems Programming
	Slide 6
	Slide 7: Components in Computing
	Slide 8: PC Motherboard
	Slide 9: Evolution of CPU: Moore’s Law
	Slide 10: Evolution of Memory
	Slide 11: CPU vs Memory Speed
	Slide 12: Multi-core Processor
	Slide 13: Memory Hierarchy
	Slide 14: Memory Hierarchy
	Slide 15: CPU Architectures
	Slide 16: ABCD - Pointers
	Slide 17: 32 vs 64 bit Register Size Implications
	Slide 18: Memory
	Slide 19: ABCD: Pointer Values
	Slide 20: ABCD - Memory
	Slide 21: Why 64-bits?
	Slide 22
	Slide 23: What is the OS?
	Slide 24: What does a Kernel do?
	Slide 25: Event-Driven
	Slide 26: User Mode vs. Kernel Mode
	Slide 27: Root user (aside)
	Slide 28
	Slide 29: Important Terms in the Kernel
	Slide 30: Important Terms in the Kernel (cont)
	Slide 31: ABCD - Kernel
	Slide 32
	Slide 33: Lifetime of a Program
	Slide 34: Compilation vs. Interpretation
	Slide 35: Intermediate Representation
	Slide 36: POSIX
	Slide 37: ABI
	Slide 39
	Slide 40: Virtualization of Traditional OS Stack
	Slide 41: On Hardware
	Slide 42: On Kernel
	Slide 43: Containerization
	Slide 44: ABCD - Virtualization
	Slide 46: Summary

