
Cryptography

Applications

Slides 12.2CMPT 201 18/3/2025

Instructor: Linyi Li

Slides adapted from Dr. B. Fraser

Topics

⚫ How can we safely store passwords?

⚫ How do we verify a document is authentic?

⚫ How can we trust websites?

28/3/2025

Storing Passwords

38/3/2025

Storing Passwords

⚫ Password verification systems don't store plain text passwords
−..

−Adds security: attacker getting a copy of the password file

gives them the hash which cannot be used to log in.

−To check a password, system checks

..

⚫ Linux stores passwords in /etc/shadow (accessible by root)

pwdis_1234:yj9T$LirzYIOxlHbbu6Wi/9zCl.$I9AZk5jAaY0uRPQfPnTEu.x5UeMVROrhP.i9gI96DD7:20159:0:99999:7:::

pwdis_1235:yj9T$Rnadt7C63/7Bl1s/3Gx8v0$fvKI5ljHrj2hhnIhb6SkvjPvDQb7Awb3wUKU5YNmKK.:20159:0:99999:7:::

pwdis_abcd:yj9T$/TAaIyA61/lpbWM0vB5wA1$jofzhQHkwXjtpqfZ6cXIEwepD1L1V75gNriCM5C3pS7:20159:0:99999:7:::

User

name

Hash alg.

y=yescript

Salt Password

expiry info

Hash

Passwords are hashed and it stores only the hashes.

hash(user-input) == stored hash.

48/3/2025

Rainbow Table Attack

⚫ Rainbow table attack
−..

−Can then quickly search password file of hashes for known

passwords.

⚫ Defence: Salt the password.
−Salt: ..

−Store salt and hash(user-password || salt)

(|| means concatenation)

−Verify password:

..

⚫ Attacker cannot reasonably compute hash of all possible
passwords along with all possible salts.

Attacker pre-computes the hash of common passwords.

A random number or string

hash(user-input || salt) == stored-hash

58/3/2025

Verifying Documents

68/3/2025

Secure digest

⚫ Secure digest for summary of document
−Often used to verify a downloaded file is not corrupted.

−A secure digest is a summary of a message:

..

−Typically produced by a cryptographic hash function

e.g., SHA-256.

⚫ Example
$ sha256sum ./README.md

e293cdc4f5c4686772fba8159be9e9636654fed7ce72bfd2e75add8a6833c5ab ./README.md

A fixed-length string that characterizes

an arbitrary-length message.

78/3/2025

Digital Signature

⚫ Digital signatures combine public key crypto and hashing.
−Goal: ..

−The message can be public;

we just want to prove who sent it and that it's unaltered.

⚫ Two parties: signer and verifier.
−The Signer:

⚫Sends a message

⚫Wants to prove they sent the message.

−The Verifier:

⚫Receives message

⚫Wants to verify the message was

sent by the signer and is unaltered.

Verify a message (or document) is

an unaltered copy of the one produced by the signer.

88/3/2025

Signer

⚫ The Signer will:
−Writes a document: m

−Computes a message digest: h(m) (e.g., using SHA-256)

⚫Not good enough yet: Adversary could write document z,

computes h(z) and plant both on the server.

−..

(e.g., using RSA public key crypto)

⚫This is called signing.

⚫Only the signer has the private key,

so only the signer can encode with it.

−Sends the message & the signature:

<m, enc(h(m))>

Encrypts the digest with own private key: enc(h(m))

98/3/2025

Verifier

⚫ The Verifier will:
−Receives the message and the signature:

<m, enc(h(m))>

−Decrypts the signature with..

dec(enc(h(m))) == h(m)

−Computes a message digest: h(m). Let's call it h'.

−..

⚫If yes, then the message is authentic.

⚫ Since only signer knows their private key,
..
then they must have signed the document.

the signer's public key:

Verifies that h(m) == h'

if the signature can be decrypted with their public key

108/3/2025

Trusting Unknown Companies

118/3/2025

Digital Certificate

⚫ Digital certificates use digital signatures.

⚫ Scenario
−Imagine sending password to website (e.g., Instagram).

−You encrypt your password with Instagram's public key.

−Only Instagram can decrypt the message, so password is safe.

⚫ Questions
−..

−One way:

Instagram sends you their public key when you first go site.

−How do you know if the public key really belongs to Instagram?

But a rogue website could disguise as Instagram and send you a wrong

key.

How do you get the public key of Instagram?

128/3/2025

Secure Browsing

⚫ HTTP has no encryption.

⚫ HTTPS uses encryption:
−Instagram sends you its public key in a digital certificate.

−Digital Certificate:

..

−Your OS verifies the authenticity of the digital certificate.

OS has some built-in..

−Your browser then uses Instagram's public key to encrypt messages

to Instagram.

⚫ Only Instagram can decrypt messages encrypted with their
public key.

proves that the public key indeed belongs to Instagram.

trusted signing authorities.

138/3/2025

Digital Cert Operation

⚫ How digital certificates work:
−A digital certificate is signed by a digital certificate authority

⚫E.g., VeriSign, DigiCert

−OS vendor ships OS with public keys for some trusted digital

certificate authorities like DigiCert.

⚫This establishes the base level of trust:

.. root of trust.

148/3/2025

Digital Certificate Example

⚫ Instagram uses DigiCert:
−Instagram goes to DigiCert, gives

its public key, and requests a

digital certificate.

⚫ DigiCert creates a digital
certificate:

−It says "this public key belongs to

Instagram"

−..DigiCert signs it with

DigiCert's own private key.

158/3/2025

Digital Certificate Example (cont)

⚫ Instagram Digital Certificate
−When browser connects to Instagram,

Instagram sends the digital certificate.

⚫Browser uses its trusted public key for DigiCert to

verify the digital certificate from Instagram.

−If your OS is not compromised, this whole process is secure based

on the first level of trust.

⚫If the OS is compromised, there is no 1st level of trust and this

whole process is not secure.

⚫ Encryption Use
−..

(public key is slow and generates lots of data)

−Rest of communication..

(faster, smaller)

Public key encryption is used to exchange random secret key

encrypted with secret key encryption

168/3/2025

Chain of Trust

⚫ Digital certificates rely on the chain of trust
−To trust the public key sent by Instagram,

we need to trust DigiCert's signature.

−To trust DigiCert's signature,

we need to trust DigiCert's public key.

−In order to trust DigiCert's public key (shipped with OS),

we need to trust that our OS is not compromised.

⚫ Chain of trust relies on the root of trust being trustworthy.
−Our root of trust is the OS.

178/3/2025

Activity: SSH
⚫ [Opt] Spin up new container: docker run -it ghcr.io/sfu-cmpt-201/base

⚫ Generate public/private key with ed25519 & passphrase

$ ssh-keygen -t ed25519 -C "your email address"

−Look at files in ~./ssh

⚫ SSH SFU

−ssh <yourID>@csil-cpu01.csil.sfu.ca –p 24

Asks user name & password; use VPN if off campus.

⚫ SSH Keys

−SSH SFU; manually add pub key to end of ~/.ssh/authorized_keys

−Log-out, log-in (asks passphrase)

⚫ SSH Agent: Avoids passphrase; Stores key in memory.

eval ssh-agent

ssh-add

kill $SSH_AGENT_PID

Servers: https://www.sfu.ca/fas/computing/support/csil/remote-access.html 188/3/2025

Hash Collisions

198/3/2025

Birthday Match = Hash Collision
⚫ Birthday Match
−In a class of 30 people, probability of two students having the same

birthday is..

https://en.wikipedia.org/wiki/Birthday_attack

⚫ Hash Collisions
−Given enough messages,

..

−i.e., can we show that a hash function

..

⚫ (Recall) Strong collision resistance:
It should be difficult to find two messages x and x'

where h(x) == h(x').

−i.e., given a hash function, it should be difficult to find two values

that produce the same hash.

~70%!

we can find a hash collision between two messages.

does not achieve strong collision resistance?

208/3/2025

Birthday Attack

⚫ Attacker use a contract the customer is expected to sign
(say agreement to buy company for $100,000).

⚫ Attacker then:
−..

(adding a space, adding commas, adding typos, ...)

−Creates malicious altered copies (sale price $100,000,000)

−Goal: ..

−Customer given benign copy to sign using their private key and hash of

document.

−Attacker then..

−Since the contracts have same hash, attacker can claim customer signed

malicious contract using their private key!

Creates benign altered copies of the contract

finds malicious contract with same hash as benign contract

substitutes benign contract with malicious one.

218/3/2025

Demo: Hash Collision

⚫ Demo: Collision in Crypto Hash Functions
−MD5 was a widely used crypto hash function

but was found to be insecure by 2005.

−No longer in use.

⚫ Get images & Compare Hashes
$ wget https://s3-eu-west-1.amazonaws.com/md5collisions/ship.jpg

$ wget https://s3-eu-west-1.amazonaws.com/md5collisions/plane.jpg
$ openssl dgst -md5 ship.jpg

$ openssl dgst -md5 plane.jpg

−Algorithm exists to manipulate a pair of images into having the

same MD5 hash.

⚫ SHA256 is not yet known to be insecure.
$ openssl dgst -sha256 ship.jpg

$ openssl dgst -sha256 plane.jpg

https://natmchugh.blogspot.com/2015/02/create-your-own-md5-collisions.html 228/3/2025

ABCD: Birthday

⚫ A birthday attack is successful when attackers find:

(a)Two images that look the same but have different binary data.

(b)Two students in CMPT 201 who have the same birthday.

(c) A second document which matches the hash of a single given

document.

(d)Hash collision of a benign and malicious document.

238/3/2025

Summary
⚫ Passwords
−Store salted and hashed passwords to avoid rainbow tables.

⚫ Digest
−A hash of a document.

⚫ Digital Signatures
−Sign a hash with a private key.

⚫ Digital Certificates
−Sign document to show who really owns a public/private key.

−Chain of trust for distributing certificates.

−Root of trust built into OS.

⚫ Hash Collisions
−Duplicate hash (digital signature) is a security issue.

−Birthday attack to find duplicates. 248/3/2025

	Slide 1
	Slide 2: Topics
	Slide 3
	Slide 4: Storing Passwords
	Slide 5: Rainbow Table Attack
	Slide 6
	Slide 7: Secure digest
	Slide 8: Digital Signature
	Slide 9: Signer
	Slide 10: Verifier
	Slide 11
	Slide 12: Digital Certificate
	Slide 13: Secure Browsing
	Slide 14: Digital Cert Operation
	Slide 15: Digital Certificate Example
	Slide 16: Digital Certificate Example (cont)
	Slide 17: Chain of Trust
	Slide 18: Activity: SSH
	Slide 19
	Slide 20: Birthday Match = Hash Collision
	Slide 21: Birthday Attack
	Slide 22: Demo: Hash Collision
	Slide 23: ABCD: Birthday
	Slide 24: Summary

