
Inter-Process
Communication:
Shared
Memory

Slides 11.2CMPT 201 17/28/25
Instructor: Linyi Li

Slides adapted from Dr. B. Fraser

Topics

l Since memory is so useful and easy to access,
can we load a whole file into memory?

l If processes have separate memory spaces,
how can two processes share memory?

27/28/25

Memory Mapping

37/28/25

Intro to Memory Mapping

l Memory mapping
-It’s not just for IPC, but we'll need it!

l Uses for Memory Mapping:
-..
vs using read()/write()
-Allocating memory
-..
(useful for embedded systems; shared between processors!)

Loading a file into memory

Accessing memory-mapped devices using /dev/mem

47/28/25

mmap()

..

-addr: starting address of the new mapping.
Usually NULL so OS pick the address.
-length: # bytes in mapping.
-prot: Memory protection for executable, readable, writable, or not
accessible.
-flags: MAP_SHARED or MAP_PRIVATE, and optionally
MAP_ANONYMOUS. (explained below)
-fd: .. (explained below)
-offset: the offset into the file to be mapped.

l Returns a pointer to the beginning of the new mapping.

void *mmap(void *addr, size_t length, int prot, int flags, int fd, off_t offset)
mmap() creates a memory mapping:

the open file to be mapped.

57/28/25

Types of Memory Mapping
l Two types of memory mappings
-..

lFile is loaded into a memory region
lFile I/O becomes memory access:
-Replace read()/write() calls with pointer access to read or write file.

lThis is called a.. memory-mapped file.
lflag argument: MAP_ANONYMOUS flag is not set.

-..
lThis is another way to allocate memory to our process
(in addition to sbrk()).
lmalloc() uses both sbrk() and mmap().
lflag argument: MAP_ANONYMOUS flag is set. fd argument is ignored.

File mapping

Anonymous mapping

67/28/25

Shared vs Private

l Memory Mapping can be shared or private.
l Shared Mapping:
-..
-E.g., ..

lSince memory is cloned, the parent and the child
will share the same mapping.

-Or, multiple processes can map the same file.

l Private Mapping:
-Changes in one process's memory mapping
..

Multiple processes can share a mapping.
create a mapping (file or anonymous) and fork() a child.

do not appear for other processes, and not written to file.

77/28/25

4 Possiblities

l Private file mapping:
-A file is mapped to a process as a
private mapping.
-..

l Private anonymous mapping:
-More memory is allocated
to the calling process.
-..

(changes not shared).

l Shared file mapping:
-A file is mapped to a process as a
shared mapping.
-Changes propagate to:

l..
land other processes mapping
same file.

l Shared anonymous mapping:
-More memory is allocated
to the calling process.
-Memory is shared; changes
propagate to other process!
mmap() arguments: offset = 0
 fd = -1 or shm_open()
 flag |= MAP_ANONYMOUS

Changes not written to file or
shared with other processes.

the real file

fork() copies memory
but each process has private copy

87/28/25

Unmap

l int munmap(void *addr, size_t length);
-Unmaps the mapped memory.

-Region is also automatically unmapped when process is terminated

l On the other hand, closing the file descriptor does not unmap the
region.

-All pages containing a part of the indicated range are unmapped

97/28/25

ABCD: Memory Mapping

l Which of the options below is best described by:
-Used to allow fast access to a temporary copy of a file.
-Used to have two processes access the same memory so they can
both access a shared data structure.
-Used to allow any number of processes to edit a file and see each
others edits, plus reflect changes to file on disk.

(a)Shared anonymous mapping
(b)Private anonymous mapping
(c)Shared file mapping
(d)Private file mapping

Answers:

107/28/25

Memory Mapping Activity

l Activity: memory-mapped file I/O.
-Modify the example from man mmap as follows:
-Receive only one command-line argument,
which is a file name.
-Create a file memory mapping for the entire file.
-Print out the content of the entire memory mapping.

117/28/25

Shared Memory

127/28/25

Sharing memory

Two different ways to share memory between processes.
l For Related processes:
..
-mmap() with MAP_SHARED | MAP_ANONYMOUS
(i.e., shared anonymous)

l For Unrelated Processes:
..
-man 7 shm_overview

lshm_open(): Open a shared memory object
lftruncate(): Set size
lmmap(): Create memory mapping

Create memory map then share with fork().

use a shared memory object (shm_open()) and then mmap()

137/28/25

shm_open()

int shm_open(const char *name, int oflag, mode_t mode)
-Similar to opening a file, but it's shared memory.

lJust like creating a file; listed in /dev/shm/
lE.g., ls /dev/shm/somename

-Returns: file descriptor for..
-name: Known by all participating processes.
 General form: /somename.
-flag: O_CREAT flag set when creating a new object.
-mode: For permissions on creation.

a shared memory object.

147/28/25

Size and Map

int ftruncate(int fd, off_t length)
-Memory object is created with size 0.
-ftruncate() sets its size.

void *mmap(void *addr, size_t length,
 int prot, int flags, int fd, off_t offset)

-Create memory map for memory object
(after created by shm_open() and size set with ftruncate()).
-..
(from shm_open()).

Pass shared memory object file descriptor as fd

157/28/25

Cleanup

int munmap(void *addr, size_t length)
-Unmap shared memory when no longer needed.

int shm_unlink(const char *name)
-..
when done with shared memory.

lRemoves file from /dev/shm/.
-However, processes still using the shared memory object keep
using it.

Remove shared memory object

167/28/25

ABCD: shm_open()

l When do we need to call shm_open()?

(a)When two processes want to share memory.
(b)When a parent and child processes want to

share memory without calling fork().
(c)When two unrelated processes want to share

memory.
(d)When two processes share access to a file and

each process knows the file’s name.

177/28/25

Activity: Shared Memory

l Activity
-Write two programs that communicates
with each other via shared memory.
-They should each receive a shared memory object file name as the
only command-line argument.
-One program should write an integer to the shared memory
-The other program should read the integer written by the first
program from the shared memory.
Hint:
• writer: shm_open, ftruncate, mmap, getchar (wait), munmap,

shm_unlink
• reader: shm_open, mmap, getchar (wait), munmap, close

187/28/25

Activity: Answer

l See 11-ipc/shm_reader.c, shm_writer.c in reference code of
course website.

197/29/25

Summary

l Two processes can communicate by sharing memory.
l mmap()
-Creates a memory mapping of a file or some memory.
-Usually copied by fork()
-Useful for parent-child shared memory.
-mmap(), munmap()

l shm_open()
-Creates a named shared memory object.
-Useful for unrelated processes to share memory.
-shm_open(), ftruncate(), mmap(), munmap(), shm_unlink()

207/28/25

