

Topics

-What if they are parent-child?
-What if they are unrelated?
-What if we want to send full messages, not just bytes?

7/22/25

IPC

 Inter-process communication (IPC)
.. allows different processes (as well as threads)
to communicate with each other.

UNIX domain socket is an example of this,

_plpesa
-FIFOs,
-MesSage queues,

-memory mapping, and shared memory.

7/22/25

7/22/25 4

Pipe Usage

pS aux | grep bash
| is a pipe.
-The output of the first becomes input to the second.
int pipe(int filedes|[2])
«man 7 pipe
__Creates two file descriptors in filedes:
.filedes[0] gives us the..read end.

.filedes|[1] gives us the.. write end.

7/22/25

Pipe Details

—.. [t uses a buffer in the kernel.

It is unidirectional:
. once you determine who's the sender and
who's the receiver, you can't switch that.

-.. It is a byte stream.

-non-buffered 1/O:
.read(), write()

~buffered I/O:
fprintf(), fscanf()).

7/22/25

Parent-Child Communication

-.. First create a pipe (2 ends), then call fork()

-Both file descriptors (filedes[0] and filedes[1]) available in both
parent and child because.. memory is cloned

~Parent parent and child can use pipe to communicate.

« Question: How could we encapsulate this in a module?

7/22/25

Pipe in Kernel

User Space

Parent Process Child Process

Pipe R W Pipe

FDs FDs RW

Kernel

7/22/25

Point 1: Different Ends

-.. Each process typically uses a different end.
(So each process closes end they don't use)

. child could write to pipe and parent read from pipe.
-Parent closes write end: close(filedes[1])

-Child closes read end: close(filedes|[0])
~Child writes into pipe and parent reads from it.

. Take a look at the example from man pipe.

7/22/25

Point 2: Buffer Size

. Pipe buffer size
—-The pipe's buffer has a fixed size in the kernel: PIPE_BUF

if n <= PIPE_BUF, ..it is atomic.
if n > PIPE_BUF, ..it may be non-atomic

(other writes maybe interleaved between parts of this write).
~Details depend on if it's a non-blocking pipe; see man 7 pipe
-PIPE_BUF == 4096 on Linux.

7/22/25

Point 3: Close all write()

.. Closing all write FD's will
make read() return O after returning all data from buffer.

-This can be used as a signaling mechanism.

-A parent creates pipe and calls fork()

-Parent process closes write FD and read()s.

-Child process closes read FD and write()s its data.
-Data is exchanged via the pipe
—.. Child process closes write FD

-Once parent has read all data in the pipe's buffer,
read() returns O.

Parent then knows child has closed write end.
7/22/25

Duplicating File Pipes

iInt dup2(int oldfd, int newfd)

~dup2() system call
.. adjusts the file descriptor newfd so that it now

refers to the same open file descriptor as oldfd

. Redirect standard output to the write end of the pipe:
dup2(filedes[1], STDOUT_FILENO);

__Any writes to STDOUT are instead
sent to write end of the pipe.

. Redirect a pipe to the standard input.
dup2(filedes[0], STDIN_FILENO);

-Any reads from STDIN are instead read from the read end of the pipe.

7/22/25 12

Running a Program with Pipes

FILE *popen(const char *command, const char *mode)

It does three things to conveniently run a command:
—-- Forks a new process and execs the command in the shell.

returns a file stream which is connected to the STDOUT of the
command.

returns a file stream which is connected to the STDIN of the
command

« Use pclose() to close.

7/22/25

Activity: Pipe to child and back

modify the example in man pipe as follows:
-The parent should send a string to the child.

-The child should send the string back to the parent
In upper-case

-The parent should print out the received string.

7/22/25

7/22/25 15

FIFO between unrelated processes

° related processes can share a pipe as above.

-However, unrelated processes can't share a pipe.
-Instead, they can share a FIFO to communicate with each other.
int mkfifo(const char *pathname, mode_t mode)
.pathname is the name of the FIFO to be created.
.mode is the permission, same as open().
-Similar to UNIX domain sockets as it creates a file.
-Use unlink() to remove a FIFO, just like a file.

7/22/25

Opening a FIFO

unrelated processes can share a FIFO.
-One process creates FIFO with mkfifo()
-Any processes can use open(), read(), write(), etc. to access.

-One process should open it for read and other for write.
-open() blocks until the other process calls open() as well.

7/22/25

FIFO Activity

-One program should create a FIFO and read a string from it and
print it out

-The other program should write a string to the FIFO and print it out.

7/22/25

7/22/25 19

Message Queue

-similar to a FIFO, but
. It is typically used to send structured data:

a message is.. a struct or union, rather than a byte stream.

-man 7/ mq_overview

-mq_open()
-mqg_send()
-mq_receive()
-mqg_close(), and
-mq_unlink()

7/22/25

Message Queue: mg_send()

int mg_send(mgd _t mqdes,
const char *msg_ptr, size t msg_len,
unsigned int msg_prio);

-Message queue sends structured data using a pointer (msg_ptr) to
the structured data.

-msg_prio determines a priority of the message.

~-The queue is a priority queue,
i.e.,..all the messages are ordered based on their priorities
(and FIFO for the same priority).

e MQ_receive()

-Gets the whole message at once,

_not some part of it like would be possible with a pipe.
7/22/25

Summary

-Pipes: Send data between two related processes
-FIFO: Send data between unrelated processes
-Message Queue: Send full messages

7/22/25

