
Inter-Process Communication:
Pipes

Slides 11.1CMPT 201 17/22/25

Instructor: Linyi Li
Slides adapted from Dr. B. Fraser

Topics

l How can two processes send data between themselves?
-What if they are parent-child?
-What if they are unrelated?
-What if we want to send full messages, not just bytes?

27/22/25

IPC

l Inter-process communication (IPC)
..

-E.g., UNIX domain socket is an example of this,

l Other facilities:
-pipes,
-FIFOs,
-message queues,
-memory mapping, and shared memory.

allows different processes (as well as threads)
to communicate with each other.

37/22/25

Pipes

47/22/25

Pipe Usage

l We've used shell pipes:
ps aux | grep bash
-| is a pipe.
-The output of the first becomes input to the second.

l Can use pipes programmatically:
int pipe(int filedes[2])

lman 7 pipe
-..

lfiledes[0] gives us the..
lfiledes[1] gives us the..

Creates two file descriptors in filedes:
read end.
write end.

57/22/25

Pipe Details

l A pipe has the following characteristics:
-..
-It is unidirectional:
..

-..

l A pipe creates file descriptors, so use regular file I/O:
-non-buffered I/O:

lread(), write()
-buffered I/O:

lfprintf(), fscanf()).

It uses a buffer in the kernel.

once you determine who's the sender and
who's the receiver, you can't switch that.
It is a byte stream.

67/22/25

Parent-Child Communication

l A typical use case:
-..

l Fork copies file descriptors
-Both file descriptors (filedes[0] and filedes[1]) available in both
parent and child because..
-Parent parent and child can use pipe to communicate.

l Question: How could we encapsulate this in a module?

First create a pipe (2 ends), then call fork()

memory is cloned

77/22/25

Pipe in Kernel

R WPipe
FDs

Kernel

User Space

Pipe
Read
End

Write
End

Parent Process

R WPipe
FDs

Child Process
Fork

Close

87/22/25

Point 1: Different Ends

l Important point 1:
-..
(So each process closes end they don't use)

l E.g., child could write to pipe and parent read from pipe.
-Parent closes write end: close(filedes[1])
-Child closes read end: close(filedes[0])
-Child writes into pipe and parent reads from it.

l Take a look at the example from man pipe.

Each process typically uses a different end.

97/22/25

Point 2: Buffer Size

l Important Point 2: Pipe buffer size
-..

l When calling write() with n bytes:
if n <= PIPE_BUF, ..
if n > PIPE_BUF, ..
(other writes maybe interleaved between parts of this write).
-Details depend on if it's a non-blocking pipe; see man 7 pipe
-PIPE_BUF == 4096 on Linux.

The pipe's buffer has a fixed size in the kernel: PIPE_BUF

it is atomic.
it may be non-atomic

107/22/25

Point 3: Close all write()
l Important Point 3:
..

-This can be used as a signaling mechanism.

l An example scenario:
-A parent creates pipe and calls fork()
-Parent process closes write FD and read()s.
-Child process closes read FD and write()s its data.
-Data is exchanged via the pipe
-..
-Once parent has read all data in the pipe's buffer,
read() returns 0.

lParent then knows child has closed write end.

Closing all write FD's will
make read() return 0 after returning all data from buffer.

Child process closes write FD

117/22/25

Duplicating File Pipes

int dup2(int oldfd, int newfd)
l Can redirect another program's input/output to pipes.
-dup2() system call
..

l E.g., Redirect standard output to the write end of the pipe:
dup2(filedes[1], STDOUT_FILENO);
-..

l E.g., Redirect a pipe to the standard input.
dup2(filedes[0], STDIN_FILENO);
-Any reads from STDIN are instead read from the read end of the pipe.

adjusts the file descriptor newfd so that it now
refers to the same open file descriptor as oldfd

Any writes to STDOUT are instead
sent to write end of the pipe.

127/22/25

Running a Program with Pipes

FILE *popen(const char *command, const char *mode)
It does three things to conveniently run a command:

-..
-if mode == "r":
returns a file stream which is connected to the STDOUT of the
command.
-if mode == "w":
returns a file stream which is connected to the STDIN of the
command

l Use pclose() to close.

Forks a new process and execs the command in the shell.

137/22/25

Activity: Pipe to child and back

l Activity:
modify the example in man pipe as follows:

-The parent should send a string to the child.
-The child should send the string back to the parent
in upper-case
-The parent should print out the received string.

147/22/25

FIFOs

157/22/25

FIFO between unrelated processes

l Two or more..
(parent, child, grandchild)

-However, unrelated processes can't share a pipe.
-Instead, they can share a FIFO to communicate with each other.

l ..
int mkfifo(const char *pathname, mode_t mode)

lpathname is the name of the FIFO to be created.
lmode is the permission, same as open().

-Similar to UNIX domain sockets as it creates a file.
-Use unlink() to remove a FIFO, just like a file.

related processes can share a pipe as above.

A FIFO is a named pipe

167/22/25

Opening a FIFO

l Process only needs to know the FIFO's pathname:
unrelated processes can share a FIFO.
-One process creates FIFO with mkfifo()
-Any processes can use open(), read(), write(), etc. to access.

l A FIFO is still unidirectional and typically for two processes:
-One process should open it for read and other for write.
-open() blocks until the other process calls open() as well.

177/22/25

FIFO Activity

l Activity: write two programs:
-One program should create a FIFO and read a string from it and
print it out
-The other program should write a string to the FIFO and print it out.

187/22/25

POSIX Message Queues

197/22/25

Message Queue

l Message Queue
-similar to a FIFO, but
..
a message is..
-man 7 mq_overview

l 5 important functions.
-mq_open()
-mq_send()
-mq_receive()
-mq_close(), and
-mq_unlink()

it is typically used to send structured data:
a struct or union, rather than a byte stream.

207/22/25

Message Queue: mq_send()

int mq_send(mqd_t mqdes,
 const char *msg_ptr, size_t msg_len,
 unsigned int msg_prio);

-Message queue sends structured data using a pointer (msg_ptr) to
the structured data.
-msg_prio determines a priority of the message.
-The queue is a priority queue,
i.e.,..
(and FIFO for the same priority).

l mq_receive() retrieves the oldest highest priority message
-Gets the whole message at once,
..

all the messages are ordered based on their priorities

not some part of it like would be possible with a pipe.
217/22/25

Summary

l Inter-process communication (IPC):
-Pipes: Send data between two related processes
-FIFO: Send data between unrelated processes
-Message Queue: Send full messages

227/22/25

