d-

c—

Networkmg
IPv4 - AF _ INE'F

mU

2025-07-15

Instructor: Linyi Li
Slides adapted from Dr. B. Fraser

1

Topics

.How can we use sockets on a network (AF_INET)?

.How do different computer architectures agree on
a data format?

2025/7/15

2025/7/15 3

AF_INET and AF_INETG6

-IPv4: AF_INET uses 4 bytes for IP addresses:
e.g., 192.168.7.2

-IPv6: AF _INETG6 uses 16 bytes for IP addresses.
e.g., 2F10:C203:A135:DC3F:35:6F2:1:F603

~More info:

man 7 Ip struct in_addr {
mMan 4 IpV6 in_addr_ts_addr;

_We'll focus on AF_INET. "

struct sockaddr _in {
sa_family t sin_family;
in_port_ t sin_port;
struct in_addr sin_addr;

struct sockaddr _in
_ “in” means Internet unsigned char __pad[X];

2025/7/15

sockaddr_in Field: sin_addr

~-Humans write IPv4 addresses as “192.168.7.1"

—--Computer represents as 4-byte value

-inet_pton() “192.168.0.1" --> binary
--presentation to network

-inet_ntop() binary --> “192.168.0.1"
.. hetwork to presentation

_These handle both IPv4 and IPv6 e i e s

|5

struct sockaddr_in {

-Max string length defined in <netinet/in.n> EEELUEREIRLLIY

in_port_t sin_port;
struct in_addr sin_addr;

_IPv4: INET_ADDRSTRLEN unsigedchar _oad)
IPv6: INET6 - ADDRSTRLEN

2025/7/15

sin_addr - Two special addresses

sin_addr.s_addr = INADDR_LOOPBACK;

-Local communication, similar to UNIX domain sockets.
Data sent/received locally

nothing onto network.

sin_addr.s_addr = INADDR_ANY;
struct in_addr {

-A machine can have multiple network cards, i
: _ 2
- wireless & wiret (Ethernet) card: et sockoddr 1

each with an IP address EEESIEREN
~ bind() to socket with wildcard struct i addr 5, addr;
" address listens to any address. unsigned char _paclX]

2025/7/15

sockaddr in Field: sin port

—..Port number identifies a specific socket on the machine.
-Some ports are well known, such as:

SSH: 22

HTTP: 80

—Clients know to look at these ports.

struct in_addr {

-If we don't bind() our socket | n-addrtsaddr
to a specific port, then TCP or UDP vt oo
picks an unused "random” port. sa_family_t sin_family;

in_port_t sin_port;
struct in_addr sin_addr;
unsigned char _ pad[X];

2025/7/15

2025/7/15 8

Byte Order

- consider the number 12345 = 0x3039

—Little Endian:

. Store the little part (least-significant byte=LSB)
first (at lower address).

-Big Endian:

Store the big part (MSB) first (at lower address).

-Different computers communicate,
so network must have established byte order.

_Network Byte Order is Big Endian

- port number and the IP address are multi byte,
so.they are sent MSB first.

2025/7/15

Network Byte Order

man byteorder

#include <arpa/inet.h>

uint32_t htonl(uint32_t hostlong);
uintl6_t htons(uintl6_t hostshort);
uint32_t ntohl(uint32_t netlong);
uintl6_t ntohs(uintl6_t netshort);

“Host To Network Long”, etc.

-single byte data (chars) just sent one at a time.

2025/7/15

Host Names

-Host name is the computer name.

—getaddrinfo()

Converts host name (string) to set of all possible options
(structs containing an IP and a port number)

—getnameinfo()
performs reverse---|IP to host name.

2025/7/15

Activity

-Implement the socket sequence (TCP stream) using AF_INET

-Send messages from the client and print them out from the
server.

-Use port 8000 on the server.

([J
struct in_addr {

-AF _INET uses sockaddr_in in_addr_t s_addr;
I

struct sockaddr _in {
sa_family t sin_family;
in_port_ t sin_port;
struct in_addr sin_addr;
unsigned char _ pad[X];

}

2025/7/15

recv() and send()

-Similar to read() but socket specific.
-Provides more control, e.g.:

MSG_ DONTWAIT: Non-blocking
MSG_PEEK: read but don't remove

-Similar to write() but socket specific.

-Provides more control
e.g.. MSG _DONTWAIT: Non-blocking

2025/7/15

Summary

struct in_addr {
in_addr_ts_addr;
17

struct sockaddr_in {
sa_family_t sin_family;
in_port_t sin_port;
struct in_addr sin_addr;
unsigned char _ pad[X];

}

-Network Byte Order
-Big-Endian: Biggest byte is first.

2025/7/15

