
Networking
Sockets

Slides 10.1CMPT 201 17/15/25

Instructor: Linyi Li
Slides adapted from Dr. B. Fraser

Topics

l How does software do something complicated
like networking? Layers!

l What are the two types of sockets?
l What syscalls can we use to work with sockets?

27/15/25

Networking

l Programs can communicate with each other via a network.
-Can be across a network (wifi, wired, ...)
-Can be on the same computer!

l More Resources
-Beej's Guide to Network Programming
https://beej.us/guide/bgnet/ is popular.
-The Linux Programming Interface (our recommended text)
is also great.

37/15/25

https://beej.us/guide/bgnet/

Basics of the Networking Stack

47/15/25

Networking Stack

l Stack
-..

-Each layer provides a service to the layer above it.

Phy

Link (MAC)

IP

Transport

Application

Software uses a “network stack” to
organize responsibilities into layers.

57/15/25

Physical Layer

l Phy (Physical) Layer:
..
generates and receives signals.
-Need to know how to
physically send and receive data.
-Focuses on voltage and signalling.

l Analogy:
Amazon package delivery:
..

Phy

Link (MAC)

IP

Transport

Application

Does hardware Control:

need a car and a driver.

67/15/25

Link Layer

l Link (MAC) Layer:
..

-This is only for a (small area) local network.
-E.g., wired or wireless local network.
-LAN = Local Area Network

l Link layer has MAC addresses for addressing.
-MAC =..
MAC address look like: 05:35:5a:30:f9:05

l Analogy: Amazon package delivery:
-need an address and routes
(how to get there).Phy

Link (MAC)

IP

Transport

Application

Does local network addressing and routing

Medium Access Control

77/15/25

IP (Network) Layer

l IP ("Network") Layer:
..
-IP =.. Internet Protocol

l What if you want to connect a wired local
network with a wireless local network?

-Still need addressing and routing but it needs to be
something common for both wired and wireless.

l ..
-IP addresses look like: 192.168.7.53

Phy

Link (MAC)

IP

Transport

Application

Does inter-network addressing and routing

This layer uses IP addresses for addressing.

87/15/25

Transport Layer

l Transport Layer:
..

l Imagine sending/receiving lots of packages:
3 problems can occur:

-..
Think car crash; or human errors like losing a
package in a warehouse.
-..
They may be delivered by different trucks via
different routes.
-..
If the sender mistakenly thinks the package is lost
and re-sends.

Phy

Link (MAC)

IP

Transport

Application

Can do packet tracking / retransmission

Packages can be lost

Packages can arrive out of order

Packages can be duplicated

97/15/25

Transport Layer (cont)
l Some applications require an in-order reliable

byte stream.
l Need a way to control these things:
-..
provides protection against these things:
..
-..
does not provide any protection!
Raw datagrams = packets.

l Port Number
-Use a socket port number to identify
..
to send a packet
-E.g., port 80, or 443

Phy

Link (MAC)

IP

Transport

Application

TCP (Transmission Control Protocol)

No loss, no out of order, or duplication.
UDP (User Datagram Protocol)

where on a computer (~which application)

107/15/25

Application Layer

l Application Layer:
..
-Often features a well-known protocol such as:
HTTP and FTP.

Phy

Link (MAC)

IP

Transport

Application

what the application is doing.

117/15/25

ABCD Spot the Address

l Which of the following is ___________?
1) an IP Address
2) a MAC Address
3) Port Number

(a) 8001
(b) 19:02:16:08:07:01
(c) 153.10.23.103
(d) 0xF532 5E85 0005 235F

1: c

127/15/25

Socket Interface

137/15/25

Socket Syscalls

l An application can use a socket to communicate with another
process (local or remote)

l There are five key syscalls
-socket()
-bind()
-listen()
-accept()
-connect()

147/15/25

socket()
int socket(int domain, int type, int protocol)

-..
-Functions to send/receive

lsocket-specific calls: send(), recv(), sendto(), recvfrom()
lfile I/O calls: read(), write()

l int domain
-Specifies what protocol is used. What is a protocol?

l..

-Domain examples
lAF_UNIX: Local communication (this computer)
lAF_INET: IPv4 Internet protocols
lAF_INET6: IPv6 Internet protocols

Returns a file descriptor.

It defines a set of rules that an entity needs to follow to
communicate with another entity using the same rules.

157/15/25

socket() cont

int socket(int domain, int type, int protocol)
l int type
-SOCK_STREAM: TCP
..

lConnection-based / connection-oriented: will explain later
-SOCK_DGRAM: UDP
..

lConnectionless: will explain later.

l int protocol
-Always 0 for us; not used for AF_UNIX, AF_INET, and AF_INET6.
-Some domains allow different protocols.

sequenced, reliable, two-way, connection-based byte stream.

datagrams (connectionless, unreliable packets of a max length).

167/15/25

Stream Socket Sequence (TCP)

socket()
bind()
listen()

accept()
socket()

connect()

write()
read()

write()
read()

close()close()

Passive Socket
(Server)

Active Socket
(Client)

read()
write()

read()
write()

..
waits for

connection
attempt

accept()
returns on

new
connection

Blocking:

177/15/25

TCP Explanation: bind()

l socket() creates a socket.
l bind()..
-Uses a generic address struct.

-Different protocols use different structs
(with different-yet-similar names, and different fields).

struct sockaddr {
 sa_family_t sa_family;
 char sa_data[14];
 // size varies.
 // bind() given struct size.

binds the socket to an address.

187/15/25

TCP Explanation: listen(), accept()

l listen()..
-i.e., it's used to wait for a connection to come (a server).
-By default, a socket is active.

l accept()..
-Returns a new socket to use for the new connection.
-The original socket is only used to accept new connections.

l connect()..
-"connection-oriented" means we establish a connection first.

marks the socket as passive

accepts a new connection.

Client connects to a passive socket.

197/15/25

ABCD TCP Call Sequence

l Which of the following is the most likely sequence of calls for
a TCP server?

socket()
bind()
listen()
accept()
read()
write()
close()

a)

socket()
bind()
listen()
read()
accept()
write()
close()

b)

socket()
bind()
write()
listen()
accept()
read()
close()

d)

socket()
bind()
listen()
accept()
write()
read()
close()

c)

207/15/25

Datagram Socket Sequence (UDP)

socket()
bind()

recvfrom() socket()

sendto()
recvfrom()

sendto()
recvfrom()

close()close()

Server Client

sendto()
recvfrom()

sendto()

..
waits for
message

arrival

Blocking:

217/15/25

UDP Explanation

l "connectionless" means
..

-It is like an SMS message that is received one-off
-Each time we receive a message we are told who sent it.

l UDP has no active or passive sockets
-sendto() needs to specify the receiver's address every time.
-recvfrom() tells you who sent it.

we do not establish a connection first.

227/15/25

ABCD UDP Call Sequence

l Which of the following is the most likely sequence of calls for
a UDP server?

socket()
bind()
listen()
sendto()
close()

a)

socket()
bind()
sendto()
recvfrom()
close()

b)

socket()
bind()
recvfrom()
sendto()
close()

d)

socket()
bind()
read()
write()
close()

c)

237/15/25

ABCD: Who’s call is it?

l Which of the options on the right is most likely to use all of
the following calls (not in order):

(a) UDP Client
(b) UDP Server
(c) TCP Client
(d) TCP Server

connect()
close()
read()
socket()
write()

Answer: c) uses connect, so TCP client

247/15/25

ABCD: Who’s call is it?

l Which of the options on the right is most likely to use all of
the following calls (not in order):

(a) UDP Client
(b) UDP Server
(c) TCP Client
(d) TCP Server

bind()
close()
recvfrom()
sendto()
socket()

Answer: b) uses bind, which client does not need.

257/15/25

ABCD: Who’s call is it?

l Which of the options on the right is most likely to use all of
the following calls (not in order):

(a) UDP Client
(b) UDP Server
(c) TCP Client
(d) TCP Server

accept()
bind()
close()
listen()
read()
socket()
write()

Answer: d) uses listen and accept, so TCP Server

267/15/25

TCP Activity

l Create two TCP programs: server and client.
-Implement the socket sequence using AF_UNIX.
(Local machine)
-The client should be able to send messages typed on the terminal
to the server.
-The server should be able to print out the messages.
-man unix for detailed info for AF_UNIX.
-An AF_UNIX address uses struct sockaddr_un:

struct sockaddr_un {
 sa_family_t sun_family; /* AF_UNIX */
 char sun_path[108]; /* Pathname = “tmp” */
};

277/15/25

UDP Activity

l Create two UDP programs: server and client.
-Implement the socket sequence using AF_UNIX.
(Local machine)
-The client should be able to send messages typed on the terminal
to the server.
-The server should be able to print out the messages.
-man unix for detailed info for AF_UNIX.
-An AF_UNIX address uses struct sockaddr_un:

struct sockaddr_un {
 sa_family_t sun_family; /* AF_UNIX */
 char sun_path[108]; /* Pathname = “tmp” */
};

287/15/25

Summary
l Network Stack has layers (bottom-up)
-phy, link, IP, transport, application

l Socket: Connect to communicate across network.
l TCP:
-Connection-oriented; in-order delivery.
-Server:
socket(), bind(), listen(), accept(), read(), write()... close()
-Client: socket(), connect(), write(), read(), ... close()

l UDP:
-Connectionless
-Server: socket(), bind(), recvfrom(), sendto(), ... close()
-Client: socket(), sendto(), recvfrom(), close()

297/15/25

