
File I/O
File Systems

Slides 9.2CMPT 2017/7/25
Instructor: Linyi Li

Slides adapted from Dr. B. Fraser

Topics

l Can we do anything more than just use data files?
l How are file systems organized?
l What are hard/soft links?

27/7/25

The Universality of I/O

37/7/25

Everything is a File

l UNIX I/O model gives access to many things via files:
-Actual files!
-..
-Networks
-Process information

l /proc File System
-Shows system and process
information using open() /
read() / etc.
-..

-But they are not "real files"
stored on disks.

Example: /proc file system

l /proc/cpuinfo CPU info
l /proc/meminfo memory info
l /proc/PID/status process info
l /proc/PID/fd file descriptor info
l /proc/PID/task/TID thread info

Kernel dynamically populates
information in form of files.

Devices: keyboards, hard-drives, LEDs

47/7/25

E.g., Terminal

l Universality of file IO: Terminal
-3 standard file descriptors that are always open.

lThese are..
lfork() clones some opened file descriptors;
so child processes also has them.

File
Descriptor

Purpose POSIX Name stdio stream

0 Standard Input STDIN_FILENO stdin
1 Standard Output STDOUT_FILENO stdout
2 Standard Error STDERR_FILENO stderr

opened by the init process.

57/7/25

Optional: Implicitly Redirect Stdout
#include <fcntl.h>

#include <unistd.h>

#include <stdio.h>

int main() {

 close(STDOUT_FILENO);

 open("out.log", O_WRONLY | O_CREAT | O_TRUNC, 0644);

 printf("This goes to out.log\n");

 return 0;

}

Behavior: “This goes to out.log” is written to “out.log”
Why?
• close() frees file descriptor 1 (originally assigned to stdout)
• open() assigns the lowest-possible (not opened) integer
• printf() prints to file descriptor 1

67/9/25

E.g., Device Files

l Many devices have a "device file" in /dev/
-This is called a node.

l Some are..
-e.g., a mouse, a disk.

l Some are..
-/dev/null provides a "black hole" of all data written to it.
-/dev/zero provides infinite null characters.
-/dev/random and /dev/urandom are pseudorandom number
generators.

$ od -vAn -N2 -tu2 < /dev/urandom

real devices

virtual devices

77/7/25

E.g., /sys File System

l File IO in /sys file system
-/sys..
e.g., various device setups, kernel subsystem info, etc.

l Examples
-Controlling LEDs
-Accessing secondary processors
-Communicating to an accelerometer, etc.

l ioctl syscall
-Extra syscall for I/O for things
..
-E.g., Change the speed of a serial port.

shows kernel-internal information,

outside of the “normal” universal I/O model.

87/7/25

Disk Partitions

97/7/25

Disk Partitions

l ..
-/proc/partitions shows the partition info.
-In Windows, partitions are C:, D: , etc.

l A partition is typically used as a file system
-A file system is
..
-Many different types of file systems.
-Each partition can have a different file system.

l E.g., BeagleY-AI board has 2 partitions on its micro-SD card:
-One is Fat32, accessible to Windows and storing configuration data.
-One is EXT4, used by Linux to store rest of the root file system.

A disk is divided into partitions.

a system that manages files and directories.

107/7/25

Disk Partitions (cont)

l User's perspective
-..
starts with root directory /.
-Each partition contains a different tree
(More later when talking about mounting)

l Swap Partition
-A partition is also used as a swap space for memory management
e.g., ..
-/proc/swaps shows the swap space info.
(Don't always need to have swap space)

File system is a file tree;

paging

117/7/25

I-Nodes

127/7/25

I-Nodes

l A file is associated with an i-node.
-..
e.g., file type, permissions, owner, timestamps, etc.
-An i-node is identified by a number.
ls -li shows i-node numbers (1st column).

l stat(), lstat(), and fstat()
-Functions that work with file metadata mostly from the i-node.
-Read man 2 stat and man 3 stat for more details.
-Under the hood they invoke system calls.

An i-node contains metadata about the file

137/7/25

Activity: I-Node

l Activity: use stat() to display if path is file or directory
-Use command line argument to get filename (arg[1] likely)
-Read man inode, especially about st_mode.
lCheck out S_ISREG(...), and S_ISDIR(...)
-Print "Regular file" if it's a file.
-Print "Directory" if its a directory.
-Print "Other" otherwise.

147/7/25

Hard and Soft Links

157/7/25

Hard Links

l Hard links
..
-A hard link is giving another name to an existing file.

l Hard link limitations
-Cannot hard link a directory
This prevents circular links,
 i.e., a child directory that links to the parent directory.
-Hard links should be within the same file system,
because a hard link is giving another name to an existing file.

we can give many names to the same file.

167/7/25

Activity: Hard Links

l [5 min] Activity:
Use ln to create a hard link to a file.

-Read man ln to figure out how to create a hard link.
-Run ls -li for both the original file and the hard link.
(They're exactly the same)

lls -li shows the number of links as well (the third column)
l# links should increase as more hard links are created

l Modify content of original file
-Check contents of the hard link (and vice versa).
-They should be the same.

177/7/25

How rm works (aside)

l rm only deletes the hard link.
-..
(there's a system call used for deleting a file: unlink())
(There's also a more convenient one, remove())
-Only when there's no link left any more, the file gets deleted.

rm is actually “unlink”.

187/7/25

Soft Links (Symbolic Links)

l Soft links
..
-Unlike a hard link,..
The content of the file is the path to the original file.
-There's a system call symlink().

l No limitations like hard links
-Sym links are allowed for directories.
-Sym links do not have to be within the same file system.

also called "symbolic" link or sym link.
a soft link is an actual file.

197/7/25

Activity: Soft Links

l (5 min) Activity
Create a sym link with ln -s

-Run ls -li
lThey each have a unique i-node number, meaning they are two
different files.
lThe hard link count does not change even if you create a sym link:
it's because it's a different file.

-The sym link will point to nothing if the original gets deleted.

lThis is called a dangling link.

207/7/25

Optional:
Bits - setuid, setguid, sticky

217/7/25

Setuid / Setguid bits

l Program Permission
-Normally, programs you run will run with your permission.

l Setuid bit: if set, the user that runs the program can act as
the owner of the program.

-E.g., passwd sets a user's password.
It must write to the password file (/etc/shadow), which is owned by
the root.
-So, use the setuid bit:
-When a user runs passwd, the program can act as root to modify
the password file.

l Setgid bit: if set, the user that runs the program can act as if
the user belonged to the group of the program.

227/7/25

Sticky Bit

l Sticky bit:
-Can be set on a shared directory for better control.
-When set, only able to delete/rename file if:
a) you own it
b) you have write permission for it
 (It affects the directory, not the file access permissions)

237/7/25

Sticky Example

l Situation 1: Regular Directory
-Create a shared_photos/ directory that is write-open for others (e.g.,
rw-rw-rw-).
-User dr-evil creates a file selfie.jpg in it.
-User boogieman can delete selfie.jpg.

l Situation 2: Sticky Bit!
-Set sticky bit on shared_photos/
chmod +t shared_photos/l
-User dr-evil creates a file selfie.jpg in it.
-User boogieman cannot delete selfie.jpg.

247/7/25

VFS - Virtual File System

and

Mount/Unmount

257/7/25

VFS (Virtual File System)

l VFS (Virtual File System)
..

-Interface includes: open, read, write, close, etc.
VFS in kernel define a function to handle each.
-It's not a file system of real files,
..

l If a file system implements this interface,
it can be used as a Linux file system.

-E.g.,: /sys, /proc, /dev, ...

defines an interface that different
file systems can implement.

its just software pretending to be a file system.

267/7/25

Mounting

l Linux presents all file systems as a single tree
-Starts at root directory /

l In reality, this single file tree
..

l Recall:
-A partition contains a file tree
-There can be multiple partitions on a single disk.
-There can be multiple disks for a single machine.

is actually multiple file trees combined together.

277/7/25

Mounting and Unmounting

l Mounting
..
-All file systems (from different partitions/disks) are mounted and
form a single file tree.

l mount command mounts a file tree (a file system) to a
specific directory

-This target directory is called a mount point
-The mount command also shows the current setup.
(Shows the same information as /proc/mounts).

l The umount command unmounts a file system.

Combining multiple file trees into one.

287/7/25

Summary
l Everything is a file
-Use file operations to access almost anything.
-/proc for process info
-/dev for devices
-/sys for system info

l Partitions split up disks
l I-Nodes used for meta data about each file/directory.
l Hard/soft links allow two entries for one file.
l Mounting places one file tree inside another.

297/7/25

