e

-,!\ ; .
. va

B FJIe uog s Ty

<o"

£ ‘Ra

f"

c aTts & sm;l_ub X

2 SEP :
- — ; . Instructor: Linyi Li
717125 CMPT 201 Slides 9.1 Slides adapted.from Dr. B.-Fraser

Topics

. What syscalls can we use to access files (like write())?

. Why are there stdio functions, like fprintf(), in addition to
write()?

. Why do writes sometimes not happen right away?

7/7/25

7/7/25 3

File Offset

o File offset
..a pointer that points to a byte in the file where you operate.

-Offset is where both read() and write() occur (one pointer).
-Move it to an arbitrary position using Iseek()

-read() and write() automatically increments the offset:
.. Subsequent calls can just continue with the next data.

7/7/25

7/7/25

1O Syscalls

—open
-read
—write
—close
—fentl - File control

open()
« open() receives 2 or 3 parameters:

~int open(const char *pathname, int flags);

~int open(const char *pathname, int flags, mode t mode);

. flags: .. access mode and a creation mode.

~Must be one of: O _ RDONLY, O WRONLY, or O RDWR
Read only, write only, read/write

-O_RDWR | O_APPEND: All write actions happen at end of file
-O_WRONLF | O_CREAT: If file does not exist, then create it.
-O_ RDWR | O_TMPFILE: Create an unnamed temporary file
-O_WRONLY | O TRUNC: Truncate file when opened for writing

e.g., O RDWR | O CREAT

7/7/25

open() cont

-int open(const char *pathname, int flags);
-int open(const char *pathname, int flags, mode_t mode);

« Mode

-.. Sets file permissions when creating file
(flags O_CREAT or O_TMPFILE) — see man 2 chmod to learn bit masks

S |IRWXU: User can read/write/execute
.S IRUSR | S IWUSR: .. User can read/write

_ File descriptor:
a handle for the file to read and write:
it's a small non-negative integer (int)

-It could change every time you open the file.
7/7/25

write()

ssize_t write(int fd, const void *buf, size_t count);

write() writes buf to a file descriptor and

--returns the number of bytes written.
e« Man 2 write

—-- Number of bytes written may be less than count:
sinsufficient space on disk

.call interrupted by a signal handler

~-Writing takes place at the file offset, and
offset is incremented by the number of bytes actually written.

-If unsuccessful, return -1

7/7/25

7/7/25

read()

ssize_t read(int fd, void *buf, size_t count);

read() reads from a file descriptor and

" returns the number of bytes read.
e Mman 2 read
-read operation commences at the file offset,
which is incremented by the number of bytes read.

-If file offset is at or past the end of file,

- no bytes are read, and read() returns zero.
-Not an error if # bytes read < # bytes requested

.fewer bytes available right now (near end-of-file or reading
pipe/terminal)

-or read() was interrupted by a signal

—If unsuccessful, return -1

close()

int close(int fd);
—closes the file descriptor.

-Writes any remaining buffered data to file.

~Returns zero on success. On error, -1 is returned, and errno is set
to indicate the error.

7/7/25

Iseek()

off tIseek(int fd, off t offset, int whence);
« Manually adjust the file offset.

« Whence
-..from which location we want to adjust the file offset:

SEEK SET: Start of file

SEEK CUR: Current offset

+SEEK _END: End of file (15t byte after end of data)
~offset is always added.

-Can seek past end of file:
next write will extend file with O’s.

7/7/25

ABCD: Iseek

« Suppose a file has 6 bytes (i.e., EOF is at 6) and
the current file offset is 4:

Index
Content H el | o! <EOF>

T

-Note: <EOF> does not actually appear in the file.

« What character is read when doing a read() of 1 byte after
the following calls (in isolation)?

1)lseek(fd, 4, SEEK_SET)

2)Iseek(fd, -1, SEEK_CUR)

3)Iseek(fd, -1, SEEK_END)

7/7/25

fentl()

int fcntl(int fd, int op, ... /* arg */);

—-man fentl
-It can do many things, such as

-modify flags and mode used when file was opened:
op = F _SETFL (set flag)

7/7/25

Activity: Files

—Creates a new file named “tmp” in current folder
~-Writes X bytes to a file

-Write a string like “Hello World!”; your choice!
-Moves the file offset backward by X/2 bytes
-Reads and prints out from the offset to EOF
—Closes the file

7/7/25

Solution: Iseek half.c 14

7/7/25 15

Categories of File Functions

o Syscalls
-1/0 functions that are system calls:
write(), read(), etc. (previous slides)

. ..Standard library (stdio) functions

~All 1/0O functions that start with f:
fprintf(), fscanf(), fputs(), fgets(), fput(), fget(), etc.

~-The same functions without f:
printf(), scanf(), puts(), gets(), etc.

_Let's look at write(), fprintf(), and printf()

7/7/25

write() vs fprintf()

« write() directly sends data to the kernel,
fprintf() ..manages a buffer in memory

and writes to the buffer.
-Uses write() under the hood.

_Because of this,.. fprintf() is called buffered I/O.

—fprintf() generates fewer syscalls, which gives better performance
(less overhead).

_Syscalls like write() take.. a file descriptor (int)
ssize t write(int fd, const void *buf, size t count);

-Library functions like fprintf() take.. a stream (FILE *)
int fprintf(FILE *stream, const char *format, ...);

7/7/25

Stream vs File Descriptor

FILE *stream

-Convenient wrapper around a file descriptor.
Used by the stdio functions.

~Think of this as
.- a file descriptor plus a buffer backing it up.

~-You can get the file stream from a file descriptor with:
- fdopen()

~-You can get the file descriptor from a file stream with:
.. fileno()

7/7/25

Relationship

User program has data

: ! User Program
(in memory) to write.

It calls library function. stdlib

fprintf() fscanf() functions

Data written into library’s
buffer.

User Space

Later executes syscall

to write to kernel.
write() read()

Space

Kernel will
write to disk.

7/7/25

Activity: Kernel Write

~open() a file named tmp,

~write() a string (your choice) to tmp,

-infinite loop that calls sleep() for 30 seconds each loop.
-Run it in the background

-Did it write to the file tmp. Check with cat.
(It should.)

« When done, delete tmp from the command line.

7/7/25

Activity: Library print

—fopen() a file named tmp,

—fprintf() a string to tmp,

-infinite loop that calls sleep() for 30 seconds each iteration.
-Run it in the background

-Did it write to the file tmp. Check with cat.
(It should not!)

-Change to close file after writing. Repeat running it.
It should write to file.

7/7/25

Buffering

-Why did fprintf() not write to the file when the file is left open?

-Why did it write when we closed?
_Answer:.. Changes were buffered!

. fflush() immediately sends the buffered data to the kernel.
-Calling setbuf() with NULL as the buffer automatically does flushing.

~Read "man setbuf’ for more details.

7/7/25

Activity: fflush()

~-Add fflush() call after printing

« Run it and see if it writes to tmp. (It should.)

7/7/25

Kernel Buffering

User Program
- Kernel has

read/write buffers

too. forintf() fscanf() stdlib

functions

« Even kernel does
not immediately
write to disk.

User Space

@
O
e
Q
7))
[0
-
| -
@)
e

7/7/25

Kernel Buffering

» Can force kernel to flush buffer with fsync()
-Using O_SYNC when with open() automatically does fsync().

—fflush() and fsync(): both flush their buffer.
~setbuf() with a NULL bufferand O_SYNC:
- both automatically perform no buffering.

7/7/25

Blocking vs Non-Blocking I/O

.. doesn't return until the operation can be done.

- a blocking read() call doesn't return until there's something to
read.

-O_NONBLOCK flag
(either with open() or with fentl() & F_ SETFL)

-If an operation can't be done immediately, then
. the call returns an error, typically EAGAIN.

7/7/25

Summary

([J
-int open(const char *pathname, int flags);
int open(const char *pathname, int flags, mode t mode);

—ssize_t write(int fd, const void *buf, size_t count);
—ssize_t read(int fd, void *buf, size_t count);
-int close();

—off_t Iseek(int fd, off _t offset, int whence);

~write() vs fprintf()
-Non-buffered vs buffered 10
-File descriptor (int) vs stream (FILE™)

7/7/25

