
Synchronization:
Patterns

Slides 8.2CMPT 201 16/23/25

Instructor: Linyi Li
Slides adapted from Dr. B. Fraser

Topics

l Can we do something more powerful than just locking?
-Condition variables to “signal” other threads.
-Semaphores to count how many things are available.

l Can we allow multiple readers but only one writer?
l What can we solve with synchronization?
-How do dining philosophers help us with sychronization?
-What’s a circular buffer?

26/23/25

Condition Variables

36/23/25

Producer-Consumer pattern

l Producer-Consumer
A common programming pattern.
-Producer(s): one set of threads creating data.
-Consumer(s): one set of threads using the data.
-Store data: shared resource (e.g., variable or buffer) to hold the
values that have been produced but not yet consumed.
.. This is the shared resource needs protection.

46/23/25

static int avail = 0;

int main() {
 pthread_t t1;
 pthread_create(&t1, NULL, thread_func, NULL);

 for (;;) {
 while (avail > 0) {
 printf("I just consumed %d\n", avail);
 avail--;
 }
 }
 pthread_join(t1, NULL);
}

ABCD: Data race

static void *thread_func(void *arg) {
 for (;;) {
 avail++;
 sleep(1);
 }

 return 0;
}

(a) Yes, two threads change a shared variable.
(b) No, one increments, the other decrements.
(c) No, avail is static.
(d) No, main()’s while loop prevents concurrent edits to a shared variable.

l Is there a data race in this code?

Ans: A

56/23/25

static pthread_mutex_t mtx = PTHREAD_MUTEX_INITIALIZER;
static int avail = 0;

int main() {
 pthread_t t1;
 pthread_create(&t1, NULL, thread_func, NULL);

 for (;;) {
 pthread_mutex_lock(&mtx);
 {
 while (avail > 0) {
 // Simulate "consume everything available"
 printf("I just consumed %d\n", avail);
 avail--;

 }
 }
 pthread_mutex_unlock(&mtx);
 }
 pthread_join(t1, NULL);
}

Producer-Consumer

static void *thread_func(void *arg) {
 for (;;) {
 pthread_mutex_lock(&mtx);
 {

 avail++;

 }
 pthread_mutex_unlock(&mtx);
 sleep(1);
 }

 return 0;
}

Simulate making
something one at

a time.

Simulate consuming
something: decrement to 0

Use same mutex in both to serialize
access to shared data.

Avoids data race problems.

66/23/25

static pthread_mutex_t mtx = PTHREAD_MUTEX_INITIALIZER;
static int avail = 0;

int main() {
 pthread_t t1;
 pthread_create(&t1, NULL, thread_func, NULL);

 for (;;) {
 pthread_mutex_lock(&mtx);
 {
 while (avail > 0) {
 // Simulate "consume everything available"
 printf("I just consumed %d\n", avail);
 avail--;

 }
 }
 pthread_mutex_unlock(&mtx);
 }
 pthread_join(t1, NULL);
}

static void *thread_func(void *arg) {
 for (;;) {
 pthread_mutex_lock(&mtx);
 {
 avail++;
 }
 pthread_mutex_unlock(&mtx);
 sleep(1);
 }

 return 0;
}

ABCD: Efficiency

(a) Wasted space: Use of an int when a bool would be better for `avail`.
(b) Wasted CPU: main keeps looping even when nothing to consume.
(c) Wasted CPU: main locking & unlocking mutex when there are

multiple values to consume.

(d) Wasted CPU: Program will never end.

l What is the major source of
inefficiency in this program?

Ans: b

76/23/25

static pthread_mutex_t mtx = PTHREAD_MUTEX_INITIALIZER;
static int avail = 0;

int main() {
 pthread_t t1;
 int s = pthread_create(&t1, NULL, thread_func, NULL);
 if (s != 0) {
 perror("pthread_create");
 exit(1);
 }

 for (;;) {
 s = pthread_mutex_lock(&mtx);
 if (s != 0) {
 perror("pthread_mutex_lock");
 exit(1);
 }

 while (avail > 0) {
 printf("I just consumed %d\n", avail);
 avail--;
 }

 s = pthread_mutex_unlock(&mtx);
 if (s != 0) {
 perror("pthread_mutex_unlock");
 exit(1);
 }
 }

 s = pthread_join(t1, NULL);
 if (s != 0) {
 perror("pthread_create");
 exit(1);
 }
}

Producer-Consumer
(with Error Checking)

static void *thread_func(void *arg) {
 for (;;) {
 int s = pthread_mutex_lock(&mtx);
 if (s != 0) {
 perror("pthread_mutex_lock");
 pthread_exit((void *)1);
 }
 avail++;

 s = pthread_mutex_unlock(&mtx);
 if (s != 0) {
 perror("pthread_mutex_unlock");
 pthread_exit((void *)1);
 }
 sleep(1);
 }

 return 0;
} 86/23/25

Condition Variable

l Condition variable purpose:
..

l Using a condition variable:
(i) one thread sends a notification to the condition variable,
(ii) another thread waits until
 a notification is sent to the condition variable.
-While waiting,..

to signal a change in state

the thread sleeps (no CPU use).

96/23/25

Integrates with Mutex

l We want to ensure that consumer(s) are thread safe.
-..

l A condition variable works closely with a mutex:

We need to hold the mutex
while processing data..

We'll wait until there is data available,..

That way the producer
(or other consumers)

can do work while we sleep.

Expect the processing of a value to occur inside a mutex.

so we don’t corrupt the
shared resource.

but not hold the mutex while waiting!

106/23/25

pthread Condition Variables
l Define the variable
pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

l Wait on a condition variable
pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex);
-Internally, it will:

l..
lOnce signalled,..

-Why release mutex when waiting?
..

l Lock-safe Sleep
cond is paired with a mutex so consumer can be sure that:

-No items added between unlocking mutex and waiting for cond.
(important because a signal with no thread waiting is lost).
-Once woken up, it again holds the mutex.

Atomically release the mutex and wait for cond
wakes up and grabs the mutex

Don't sleep while holding a lock.

116/23/25

pthread Condition Variables (cont)
l Wake up one thread waiting on cond
pthread_cond_signal(pthread_cond_t *cond);
-How many threads are waiting on cond?
1: It wakes it up one thread.
2+: One wakes up, no control over which one.
0: ..

l Wake up all threads waiting on cond
pthread_cond_broadcast(pthread_cond_t *cond);
-All threads wake up and try to grab mutex;
..

Signal is lost:
doesn’t count of how many signals are pending.

they compete for the lock

126/23/25

pthread Condition Variables (cont)
l Guideline on Signalling
signal() and broadcast() are similar; how to choose?
-If any of the waiting threads is sufficient to process the event:
..

lIt’s likely that all the threads do the same thing.
-If all of the waiting threads need to respond to an event:
..

lIt’s likely each thread does something different
in response to the event; all need to happen

use pthread_cond_signal()

use pthread_cond_broadcast()

136/23/25

Usage Pattern

l Details
-..
-Producer should signal after releasing mutex to avoid waking up a
consumer with cond only to wait for mutex (extra context switch)
-Some systems optimize with "wait morphing" to just move process from
one wait queue to another in the OS

Producer:
 pthread_mutex_lock(&mutex);

 <do some work producing an item>

 pthread_mutex_unlock(&mutex);

 pthread_cond_signal(&cond);

Consumer:
while(true) {
 pthread_mutex_lock(&mutex);

 while (<no work to do>) {
 pthread_cond_wait(&cond, &mutex);
 }

 <do some work>

 pthread_mutex_unlock(&mutex);
}

A condition variable must always use the same mutex.

146/23/25

static pthread_mutex_t mtx = PTHREAD_MUTEX_INITIALIZER;
static pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

static int avail = 0;

int main() {
 pthread_t t1;
 pthread_create(&t1, NULL, thread_func, NULL);

 for (;;) {
 pthread_mutex_lock(&mtx);

 // This while loop is new.
 while (avail == 0) {
 pthread_cond_wait(&cond, &mtx);
 }

 while (avail > 0) {
 // Simulate "consume everything"
 printf("--> Consumer:%d.\n", avail);
 avail--;
 }

 pthread_mutex_unlock(&mtx);
 }

 pthread_join(t1, NULL);
}

Producer-Consumer with Condition Variable

static void *thread_func(void *arg) {
 for (;;) {
 pthread_mutex_lock(&mtx);

 avail++;
 printf("Producer: %d.\n", avail);

 pthread_mutex_unlock(&mtx);

 // This signal is new.
 pthread_cond_signal(&cond);
 sleep(1);
 }
}

156/23/25

Discussion of Code

l Use of Condition Variables Discussion
-mutex still protects the shared variable avail.
-After producing an item, producer sends a signal to cond to wake up
a waiting thread, if any: pthread_cond_signal(&cond)

lThis notifies other thread there is something to consume.
-At each iteration, consumer checks if there is any available item to
consume (the new while loop).

lIf nothing's available (avail == 0), it sleeps: pthread_cond_wait()
lThis releases the mutex before sleeping

-Consumer wakes up when signalled by the producer:
lpthread_cond_wait() grabs mutex before returning.

166/23/25

pthread_cond_wait() in loop?

l Why put pthread_cond_wait() in a loop?
-Consumer only has work to do when: (avail != 0)
(avail != 0) is called the..
-Consumer only waits if there is no data to process.
For this, just if (avial == 0) seems fine.
-But, we must recheck the
predicate after we are signalled:

lWe were waiting on the
mutex as well as cond,
..

lTherefore, no guarantee after
a wake-up that data is available.

int main() {
 for (;;) {
 pthread_mutex_lock(&mtx);

 // This while loop is new.
 while (avail == 0) {
 pthread_cond_wait(&cond, &mtx);
 }

 while (avail > 0) {
 // Simulate "consume everything"
 avail--;
 }

 pthread_mutex_unlock(&mtx);
 }
}

condition variable's predicate.

so another thread may
have consumed the data first.

176/23/25

static pthread_mutex_t mtx = PTHREAD_MUTEX_INITIALIZER;
static pthread_cond_t cond = PTHREAD_COND_INITIALIZER;
static int avail = 0;

int main() {
 pthread_t t1;
 void *res;
 int s;

 s = pthread_create(&t1, NULL, thread_func, NULL);
 if (s != 0) {
 perror("pthread_create");
 exit(1);
 }

 for (;;) {
 s = pthread_mutex_lock(&mtx);
 if (s != 0) {
 perror("pthread_mutex_lock");
 exit(1);
 }

 // This while loop is new.
 while (avail == 0) {
 s = pthread_cond_wait(&cond, &mtx);
 if (s != 0) {
 perror("pthread_mutex_lock");
 exit(1);
 }
 }

 while (avail > 0) {
 /* This is simulating "consume everything available" */
 printf("--> Consumer: avail at %d.\n", avail);
 avail--;
 }

 s = pthread_mutex_unlock(&mtx);
 if (s != 0) {
 perror("pthread_mutex_unlock");
 exit(1);
 }
 }
}

static void *thread_func(void *arg) {
 for (;;) {
 int s = pthread_mutex_lock(&mtx);
 if (s != 0) {
 perror("pthread_mutex_lock");
 pthread_exit((void *)1);
 }
 avail++;
 printf("Producer: avail up to %d.\n", avail);

 s = pthread_mutex_unlock(&mtx);
 if (s != 0) {
 perror("pthread_mutex_unlock");
 pthread_exit((void *)1);
 }

 // This signal is new.
 s = pthread_cond_signal(&cond);
 if (s != 0) {
 perror("pthread_cond_signal");
 pthread_exit((void *)1);
 }
 sleep(1);
 }

 return 0;
}

Producer-Consumer
with Condition Variable
with Error Checking

186/23/25

Condition Variable Template for Consumer
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>

static pthread_mutex_t mtx = PTHREAD_MUTEX_INITIALIZER;
static pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

int main() {
 int s = pthread_mutex_lock(&mtx);

 if (s != 0) {
 perror("pthread_mutex_lock");
 exit(1);
 }

 while (/* Check if there is nothing to consume */) {
 /* Use while, not if, other threads might have woken
 up first and changed the shared variable. */
 pthread_cond_wait(&cond, &mtx);
 }

 // Do the necessary work with the shared variable, e.g., consume.

 s = pthread_mutex_unlock(&mtx);
 if (s != 0) {
 perror("pthread_mutex_lock");
 exit(1);
 }
}

196/23/25

Semaphores

206/23/25

Semaphores

l ..
-A lock (mutex) is either available or not available, i.e., binary.
-A semaphore is more flexible:
..
i.e., how many are available.

l Useful when availability is not binary but a count
e.g., how many items are available to consume?
-If the availability count is 0,
it means the semaphore is..
-If the availability count is greater than 0,
it means the semaphore is..
-Must initialize the semaphore with
an initial max availability count.

unavailable.

available.

it indicates the availability as a count,

A semaphore is a lock with a count

216/23/25

pthread Semaphore Functions

l Create & Initialize the semaphore

#include <semaphore.h>
sem_t sem;
sem_init(sem_t *sem, int pshared, unsigned int value);
-Sets current # available to value for sem.
-pshared indicates if sem is for threads (0) or processes (1).

226/23/25

pthread Semaphore Functions
l Wait to "acquire" one of the semaphore's count
sem_wait(sem_t *sem);
-If count is 0, it blocks until count > 0.
-When count is > 0 it decrements count and returns.
-Does not guarantee mutual exclusion to a critical section:
..

l Signal to count-up the semaphore:
sem_post(sem_t *sem);
-If synchronizing access a..
then posting can be like..

lE.g., allow at most 50 students registered in a course.
-If synchronizing between different sections of code,
then it might indicate a new resource produced.

it counts the availability of a resource.

limited resources
releasing a resource.

236/23/25

ABCD: Semaphore

lWhich of these creates a semaphore which
behaves the same as a mutex?

sem_init(sem_t *sem, int pshared, unsigned int value);

(a) sem_init(&sem, 0, 0);
(b) sem_init(&sem, 0, 1);
(c) sem_init(&sem, 0, 2);
(d) sem_init(&mutex, 0, 10);

Answer: b

246/23/25

Semaphore Use Ideas

l Places to use a Semaphore
-Can have a..
to acquire and release the resources.
-Can have different parts of the code use them, such as:

lProduce: ..
lConsumer: ..
lMay still need a mutex to protect shared data.

single section of code wait and then post

post when an item is ready
wait until an item is ready

256/23/25

Read-Write Lock

266/23/25

Read-Write Lock
l Read-write lock
-Another synchronization primitive.
-..

lMultiple readers can all read at the same time!
lNobody else can access data while anyone writes.

l Initialize: pthread_rwlock_t rwlock = PTHREAD_RWLOCK_INITIALIZER;

l Acquire lock for reading
pthread_rwlock_rdlock(pthread_rwlock_t *rwlock);
-Allows any thread(s) to grab rwlock for reading as long as there is no
thread that hold it for writing.

l Acquire lock for writing
pthread_rwlock_wrlock(pthread_rwlock_t *rwlock);
-This allows only one thread to grab rwlock for writing.

Allows either unlimited readers, xor a single writer:

276/23/25

Dining Philosophers

286/23/25

Dining Philosophers
l Problem Description
-Philosophers sit at a round table.
-Philosophers alternate between eating and thinking.
-To eat, a philosopher needs two forks (at their left and right). To
think, no forks are needed.
-One fork between adjacent philosophers.

l..

l We can model this as
a synchronization problem:

-..
-A fork is a shared resource that
only one should access at a time

For more info: https://pages.cs.wisc.edu/~remzi/OSTEP/threads-sema.pdf

Each fork is a resource shared
by two adjacent philosophers.

Each thread is a philosopher.

296/23/25

Try 1: Big lock!

l Challenge
-come up with a solution that protects shared resources correctly
and does not deadlock.

l Try 1: One big lock (not efficient)
-Idea:
..
-Correctly avoids deadlocks but
..
-Linux used to use this approach to
protect kernel resource during a syscall:
“the big kernel lock”

Use one mutex to guard all forks and control access.

allows only one philosopher to eat.

306/23/25

Try 2: Lock each fork

l Try 2: One lock per fork.
l Let’s create a bad “solution”:
-Have all threads grab their right fork and then their left fork.
-But if every philosopher grabs their right fork at the same time,
then..
-The result:..

l Recall: deadlock conditions discussed previously
-We can break any of these conditions to avoid a deadlock.

1. Hold-and-wait
2. Circular wait
3. Mutual exclusion
4. No preemption

no philosophers can grab their left fork.
deadlock due to hold-and-wait and circular-wait.

316/23/25

Possible Solutions
l Solution 1:
..
-E.g., Most philosophers grab right fork then left fork. Have have one
philosopher grab left fork then right fork.
-..

l Solution 2:
..
-Grab the left lock. Try the right lock. If you can't grab it,
..
-..
since no philosopher can hold a fork and wait.
-This does not prevent starvation
and could also lead to livelock.

Have a philosopher grab forks in a different order.

This breaks circular-wait condition from occurring.

Try grabbing both locks at once.

give up the left lock, and try again.
This breaks hold-and-wait condition

326/23/25

#define NUMBER 5

static pthread_mutex_t mtx[NUMBER] = {PTHREAD_MUTEX_INITIALIZER};

int main() {
 pthread_t t[NUMBER];

 for (int i = 0; i < NUMBER; ++i) {
 pthread_create(&t[i], NULL,
 thread_func, i);
 }

 for (int i = 0; i < NUMBER; ++i) {
 pthread_join(t[i], NULL);
 }
}

Dining Philosophers Implementation

static void *thread_func(void *arg) {
 int left = (int)arg;
 int right = ((int)arg + 1) % NUMBER;
 for (;;) {
 printf("Thread %d: thinking\n", (int)arg);
 sleep(5);

 pthread_mutex_lock(&mtx[left]);

 if (pthread_mutex_trylock(&mtx[right]) != 0) {
 pthread_mutex_unlock(&mtx[left]);
 continue;
 }

 printf("Thread %d: eating\n", (int)arg);

 pthread_mutex_unlock(&mtx[left]);

 pthread_mutex_unlock(&mtx[right]);
 }

 return 0;
}

336/23/25

Bounded Buffer
(Circular Buffer)

346/23/25

Bounded Buffer

l Problem Description
-Multiple threads share a buffer.
-Producer threads place items into the buffer.

lThey must wait..
-Consumers threads take items from the buffer.

lThey must wait..

l Details
-Producers:
place items from index 0 to higher indices, one at a time.
-Consumers:
remove items from index 0 to higher indices, one at a time.
-When get to last element,..

if the buffer is full.

if buffer is empty.

wrap-around to index 0.
356/23/25

Solution

l Possible solution:
..

-Mutex protects the data structure for all threads
-Condition variable signals consumer (and producer?)
-Inefficient because..

Mutex + Condition Variable

all threads need to compete and check for availability.

366/23/25

#define SIZE 10

static char buf[SIZE] = {0};
static int in = 0, out = 0;
static sem_t filled_cnt;
static sem_t avail_cnt;
static pthread_mutex_t mtx = PTHREAD_MUTEX_INITIALIZER;

int main() {
 pthread_t t1;
 sem_init(&filled_cnt, 0, 0);
 sem_init(&avail_cnt, 0, SIZE);

 pthread_create(&t1, NULL, thread_func, NULL);

 // Producer Code
 for (int i = 0;; i++) {
 sem_wait(&avail_cnt);
 pthread_mutex_lock(&mtx);

 // Produce
 buf[in] = i;
 printf("Produced: %d in %d\n", buf[in], in);
 in = (in + 1) % SIZE;

 pthread_mutex_unlock(&mtx);

 sem_post(&filled_cnt);
 }

 pthread_join(t1, NULL);
}

Semaphores:
Elegant Solution

static void *thread_func(void *arg) {
 for (;;) {
 sleep(1);
 sem_wait(&filled_cnt);
 pthread_mutex_lock(&mtx);

 // Consume
 printf("Consumed: %d\n", buf[out]);
 out = (out + 1) % SIZE;

 pthread_mutex_unlock(&mtx);

 sem_post(&avail_cnt);
 }

 return 0;
} 376/23/25

Summary
l Condition Variable
-pthread_cond_signal(&cond); pthread_cond_broadcast(&cond); pthread_cont_wait(&cond, &mutex);

-One thread signals another for an event.
-Paired with a mutex for mutual exclusion.

l Produce-Consumer Pattern: Shared data structure storing waiting items.
l Semaphore
-Sem_init(&sem, 0, 0); sem_wait(&sem); sem_post(&sem);

-Synchronization with a count

l Read-Write Lock
-Pthread_rwlock_rdlock(&rwlock); pthread_rwlock_wrlock(&rwlock);

-Multiple readers allowed; only one writer.

l Classing problems
-Dining Philosophers: worry about deadlock / livelock
-Bounded buffer: elegant semaphore solution.

386/23/25

