
Synchronization:
Intro & Mutex

Slides 8.1CMPT 2016/23/25

Instructor: Linyi Li
Slides adapted from
Dr. B. Fraser

Topics

l How can we prevent two threads form having a race case?
l How can we code a mutex in C?
l What’s important to get right about locks?

26/23/25

Intro

l Synchronization
..
-Careful synchronization avoids difficult to debug race cases.
-Race cases are hard because:

l..
l..
not just single path’s correctness.

l We'll learn synchronization primitives:
-locks (mutex)
-condition variables (next slide deck)
-semaphores (next slide deck)

refers to coordinating the execution among different threads.

They don’t always occur (some very rare)
You must reason about multiple threads,

36/23/25

Details

l Can find more info in OSTEP book
(more depth than we require)

-Chapter 28 Locks
https://pages.cs.wisc.edu/~remzi/OSTEP/threads-locks.pdf
-Chapter 30 Condition Variables
https://pages.cs.wisc.edu/~remzi/OSTEP/threads-cv.pdf
-Chapter 31 Semaphores
https://pages.cs.wisc.edu/~remzi/OSTEP/threads-sema.pdf
-Chapter 32 Concurrency Bugs
https://pages.cs.wisc.edu/~remzi/OSTEP/threads-bugs.pdf

46/23/25

Locks:
Mutexes

56/23/25

Motivation
l Recall race case from Threads notes (assume counter = 5):

l What looks like one operation

..
-We need to prevent this mix-up of sub-operations
from different threads.
-Use a lock or a mutex: ..

Thread 1 Thread 2
int tmp1 = counter
tmp1++
counter = tmp1

int tmp2 = counter
tmp2++
counter = tmp2

Thread 1 Thread 2
int tmp1 = counter

int tmp2 = counter
tmp1++

tmp2++
counter = tmp1

counter = tmp2

= 6

= 7 = 6
= 6

can actually be a number of sub-operations.

MUTual EXclusion

66/23/25

Locks
l Lock mechanisms consists of:
-..
-.. function that grabs a lock
-.. function that releases a lock

l E.g.: pthread library's lock:
-Define lock:
pthread_mutex_t myLock = PTHREAD_MUTEX_INITIALIZER;

-Mutex lock function:
int pthread_mutex_lock(pthread_mutex_t *mutex)

-Mutex unlock function:
int pthread_mutex_unlock(pthread_mutex_t *mutex)

Other languages (e.g., Java, Python, etc.)
have similar lock mechanisms.

Define the lock variable to create the lock
lock()
unlock()

76/23/25

pthread Example
l Locks guarantee: ..

static pthread_mutex_t data_mutex = PTHREAD_MUTEX_INITIALIZER;
static int data[10];

static void *thread0(void *arg) {
 int count = 0;

 pthread_mutex_lock(&data_mutex);
 {

 for (int i = 0; i < 10; i++) {
 count += data[i];
 }

 }
 pthread_mutex_unlock(&data_mutex);
 printf("Sum is %d\n", count);
 pthread_exit(0);
}

static void *thread1(void *arg) {

 pthread_mutex_lock(&data_mutex);

 {
 for (int i = 0; i < 10; i++) {
 data[i] += 1;
 }
 }
 pthread_mutex_unlock(&data_mutex);
 printf("Done update!\n");
 pthread_exit(0);
}

T0 locks
mutex

T1 tries to
lock mutex Mutex is locked

so lock() blocks thread
until mutex is free

T0 access
data[]

T0 unlocks mutex.
This unblocks T1

Unblocks

only a single thread can hold a lock

86/23/25

Operation of Lock
l pthread_mutex_lock(&mutex) either:
a)..
b)..

l Mutual Exclusion
-Even if multiple threads call lock() at once,
..
all other threads wait
-We cannot control the order in which threads grab the lock.
It depends on the underlying lock mechanism.

l Non-deterministic
-This behaviour is non-deterministic:
..
-Opposed of deterministic behaviour.

if it’s free, locks mutex and returns immediately, or
blocks, then once it’s free it locks the mutex and returns

only a single thread can hold a lock:

exhibits different behaviour every time it runs.

96/23/25

ABCD: Code with Data Race
int cnt = 0;

static void *thread_func(void *arg) {
 for (int i = 0; i < 10000000; i++)
 cnt++;
 pthread_exit(0);
}

int main(int argc, char *argv[]) {
 pthread_t t1;
 pthread_t t2;

 pthread_create(&t1, NULL, thread_func, NULL);
 pthread_create(&t2, NULL, thread_func, NULL);

 pthread_join(t1, NULL);
 pthread_join(t2, NULL);

 printf("%d\n", cnt);

 exit(EXIT_SUCCESS);
}

(a) T2 may start before T1
(b) T2 may end before T1
(c) T1 and T2 share cnt
(d) T1 and T2 share i

This code suffers
a data race.

What is the cause
of this data race?

106/23/25

Code with error checking
int cnt = 0;

static void *thread_func(void *arg) {
 for (int i = 0; i < 10000000; i++)
 cnt++;
 pthread_exit(0);
}

int main(int argc, char *argv[]) {
 pthread_t t1;
 pthread_t t2;

 if (pthread_create(&t1, NULL, thread_func, NULL) != 0)
 perror("pthread_create");

 if (pthread_create(&t2, NULL, thread_func, NULL) != 0)
 perror("pthread_create");

 if (pthread_join(t1, NULL) != 0)
 perror("pthread_join");
 if (pthread_join(t2, NULL) != 0)
 perror("pthread_join");

 printf("%d\n", cnt);

 exit(EXIT_SUCCESS);
}

This is the same code
as previous slide,
but shows error

checking on functions.

You should do this!
(Slides omit for brevity)

116/23/25

Mutex Protected

l Protect the critical
section with a lock.

l A thread trying to
change cnt must do
so with mutex
locked.

l man
pthread_mutex_lock

l Why not lock outside
the loop?

int cnt = 0;
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

static void *thread_func(void *arg) {
 for (int i = 0; i < 10000000; i++) {
 pthread_mutex_lock(&mutex);
 cnt++;
 pthread_mutex_unlock(&mutex);
 }
 pthread_exit(0);
}

int main(int argc, char *argv[]) {
 pthread_t t1;
 pthread_t t2;

 pthread_create(&t1, NULL, thread_func, NULL);
 pthread_create(&t2, NULL, thread_func, NULL);

 pthread_join(t1, NULL);
 pthread_join(t2, NULL);

 printf("%d\n", cnt);
 exit(EXIT_SUCCESS);
} 126/23/25

Lock Usage

136/23/25

Atomicity

l Atomicity
-Atomic:
..
Cannot be interfered with by other sections with same lock.
-Mutex lock makes a section of code atomic.
-Atomicity: all or nothing as it runs either
 all operations or no operations at all.

l Serialization and interleaving
-Lock effectively serializes operations:
..
-Operations from different threads are interleaved in some order.
We cannot control the order in which different threads run.

multiple operations run as if they are a single operation.

only one thread at a time can run operations guarded by lock.

146/23/25

Protecting shared variables
l Can have a data race when threads share a variable
-e.g. Accessing same..
 cnt++
-e.g. Accessing same..
 pSharedBuffer[i] = 52;

l Solve data race with a lock
-Controls and serializes access shared variable

l Where in the code?
-Data race may be..
e.g.: One function called by multiple threads
 tracking next free block to allocate.
-May be in..

thread fills buffer, one thread empties buffer.

global variable:

memory via a pointer:

from one piece of code.

different sections of code,
each using the same lock.

156/23/25

Multiple locks

l Can have multiple locks..
if they are protecting independent shared variables

-e.g.: data_samples_mutex, printer_mutex
-Each code section / thread locks the mutex(es) it needs to lock be safe.
-Reducing *lock contention* is important for performance.

166/23/25

Non-Blocking Lock

l Options to allow us to control blocking behaviour:
-pthread_mutex_trylock()
..
-pthread_mutex_timedlock()
waits a maximum amount of time before returning if unable to lock.

returns immediately if unable to lock.

176/23/25

Critical Section (CS)
and

Thread Safety

186/23/25

Critical Section (CS)

l Critical Section:
A critical section is a piece of code that
..
(or more generally, a shared resource) and
..
 -- From OSTEP

l Rephrased:
-If a thread is executing the CS,
no other threads should execute the CS.

accesses a shared variable

must not be concurrently executed by more than one thread.

196/23/25

Critical Section (CS)

l An ideal solution for CS problem must satisfy 3 requirements:
-Mutual exclusion
..
-Progress
..
-Bounded waiting
..

i.e., a thread should only be blocked for a finite amount of time.

Only one thread should be allowed to run in the CS

A thread should eventually complete (i.e., make progress).

An upper bound must exist for the amount of time
a thread waits to enter the CS

206/23/25

Thread safety & Reentrant

l Thread safe function
..
It either:

a)does not access shared resources or
b)provides proper protection for CS that access shared resources.

l Reentrant vs nonreentrant functions (related concept)
-A reentrant function is a function that
..

-Must work with different threads (thread safe), and also
..
-i.e., a function called by main() might also be called by a signal
handler on the same thread.

a function that multiple threads can run safely.

produces the correct output even when called again
while executing

the same thread (such as in a signal handler).

216/23/25

ABCD: Thread safety (1)

l How thread safe is this function?

int tmp = 0;

int swap(int *pA, int *pB) {
 tmp = *pA;
 *pA = *pB;
 *pB = tmp;
}

(a) Thread safe: YES
 Reentrant YES

(b) Thread safe: YES
 Reentrant NO

(c) Thread safe: NO
 Reentrant YES

(d) Thread safe: NO
 Reentrant NO

l Analysis:
-Not thread safe:
shared variable overwritten by each call.
-Therefore not reentrant.

226/23/25

ABCD: Thread safety (2)

l How thread safe is this function?
int tmp = 0;
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

int swap(int *pA, int *pB) {
 pthread_mutex_lock(&mutex);
 tmp = *pA;
 *pA = *pB;
 *pB = tmp;
 pthread_mutex_unlock(&mutex);
}

l Analysis:
-Is thread safe: multiple threads will block.
-Not reentrant: if threads gets interrupted by a signal while holding
mutex then signal handler will block.

236/23/25

(a) Thread safe: YES
 Reentrant YES

(b) Thread safe: YES
 Reentrant NO

(c) Thread safe: NO
 Reentrant YES

(d) Thread safe: NO
 Reentrant NO

ABCD: Thread safety (2)

l How thread safe is this function?

int swap(int *pA, int *pB) {
 int tmp = 0;

 tmp = *pA;
 *pA = *pB;
 *pB = tmp;

}

l Analysis:
-Is thread safe: no shared data
-Is reentrant: no saved or shared data

246/23/25

(a) Thread safe: YES
 Reentrant YES

(b) Thread safe: YES
 Reentrant NO

(c) Thread safe: NO
 Reentrant YES

(d) Thread safe: NO
 Reentrant NO

Making Functions Reentrant
l What makes a function non-reentrant?

A function might work with some data, like a buffer:
-use a shared global buffer
-use a shared thread-local buffer

l Solutions:
-allocate its own local variable buffer on the stack
-dynamically allocate and free new buffer in the heap
-have calling code allocate space and pass it in

l Caller Allocates Technique
-Many functions make calling code pass in the buffer.
e.g., write()
-..

Any space returned to caller or maintained
across function calls is allocated by the caller.

256/23/25

Deadlock and Livelock

266/23/25

Deadlock

l Deadlock
a condition where a set of threads
..

-The threads get stuck and make no progress.

l E.g.:
-Create mutex locks A & B
-Thread 1: locks A
-Thread 2: locks B, then blocks trying to lock A
-Thread 1: blocks trying to lock B

each hold a resource and wait to acquire a resource
held by another thread.

276/23/25

Deadlock Activity

l [15 min]
Write a program that creates two threads and two locks:

Thread #0: Thread #1: Useful Thread Code

l Investigation
-Does it always finish (run multiple times)?
-Does it always not finish (run multiple times)?
-What happens if both threads lock A and B in the same order?

Lock A
Print
Lock B
Print
Unlock B
Unlock A
Print

Lock B
Print
Lock A
Print
Unlock A
Unlock B
Print

#include <pthread.h>
static void *func(void *arg) {
 pthread_exit(0);
}

int main(int argc, char *argv[]) {
 pthread_t t1;

 pthread_create(&t1, NULL, func, NULL);

 pthread_join(t1, NULL);
}

Demo: deadlock.c 286/23/25

Necessary Conditions for Deadlock

l 4 conditions are necessary for deadlock:
These do not guarantee deadlock:
deadlock also depends on timing of thread execution.
1)Hold and wait:
..

2)..
there exists a set {T0, T1, ..., Tn-1} of threads such that
T0 is waiting for a resource that is held by T1,
T1 is waiting for T2, ..., Tn–1 is waiting for T0.
3)Mutual exclusion:
..
4)No preemption:
resource released only voluntarily by the thread holding it

threads are already holding resources but also are
waiting for additional resources being held by other threads.
Circular wait:

threads hold resources exclusively.

296/23/25

Apply Deadlock Conditions
l E.g.: Thread 1 Thread 2

l 4 Conditions to Check
-Hold and wait?
-Circular wait?
-Mutual Exclusion?
-No preemption?

l Deadlock Prevention
-Break one of these for conditions to prevent deadlocks.

Lock A
Print
Lock B
Print
Unlock B
Unlock A
Print

Lock B
Print
Lock A
Print
Unlock A
Unlock B
Print

All 4 conditions hold.
Therefore, it’s

POSSIBLE to have
deadlock.

306/23/25

Preventing Deadlocks
l Technique 1:..
-..
you grab all the locks together or no locks at all

static pthread_mutex_t mutex0 = PTHREAD_MUTEX_INITIALIZER;
static pthread_mutex_t mutex1 = PTHREAD_MUTEX_INITIALIZER;
static pthread_mutex_t another_lock = PTHREAD_MUTEX_INITIALIZER;

static void *thread0(void *arg) {
 pthread_mutex_lock(&another_lock);
 {
 pthread_mutex_lock(&mutex0);
 printf("thread0: mutex0\n");
 pthread_mutex_lock(&mutex1);
 }
 pthread_mutex_unlock(&another_lock);

 printf("thread0: mutex1\n");
 pthread_mutex_unlock(&mutex1);
 pthread_mutex_unlock(&mutex0);
 pthread_exit(0);
}

static void *thread1(void *arg) {
 pthread_mutex_lock(&another_lock);
 {
 pthread_mutex_lock(&mutex1);
 printf("thread1: mutex1\n");
 pthread_mutex_lock(&mutex0);
 }
 pthread_mutex_unlock(&another_lock);

 printf("thread1: mutex0\n");
 pthread_mutex_unlock(&mutex0);
 pthread_mutex_unlock(&mutex1);
 pthread_exit(0);
}

Grab all locks at once, atomically.
Breaks hold-and-wait condition:

316/23/25

Preventing Deadlocks
l Technique 2:..
-Acquiring locks in the same global order for all threads:
..
as all threads try to grab locks in the exact same order.

static pthread_mutex_t mutex0 = PTHREAD_MUTEX_INITIALIZER;
static pthread_mutex_t mutex1 = PTHREAD_MUTEX_INITIALIZER;

static void *thread0(void *arg) {
 pthread_mutex_lock(&mutex0);
 printf("thread0: mutex0\n");

 pthread_mutex_lock(&mutex1);
 printf("thread0: mutex1\n");

 pthread_mutex_unlock(&mutex1);
 pthread_mutex_unlock(&mutex0);
 pthread_exit(0);
}

static void *thread1(void *arg) {
 pthread_mutex_lock(&mutex0);
 printf("thread1: mutex0\n");

 pthread_mutex_lock(&mutex1);
 printf("thread1: mutex1\n");

 pthread_mutex_unlock(&mutex1);
 pthread_mutex_unlock(&mutex0);
 pthread_exit(0);
}

Acquire locks in same order

breaks the circular wait condition

326/23/25

Livelock
l Livelock:
where a set of threads each execute instructions actively,
but..

l E.g.: Threads T0 and T1
Each attempts to acquire two resources R0 and R1

-Problem: T0 and T1 run concurrently:
..
-Each frees first resource, and then tries again forever.

while (true)
 Acquire R0
 if R1 is free, then
 Acquire R1
 do work
 Free R1, R0
 return
 else
 Free R0

while (true)
 Acquire R1
 if R0 is free, then
 Acquire R0
 do work
 Free R0, R1
 return
 else
 Free R1

they still don't make any progress.

each locking first resource then trying to lock second.

336/23/25

Livelock vs Deadlock

l Livelock:
Thread 0 and Thread 1 actively execute code
but do not make any progress.

l Deadlock vs Livelock
-Both deadlocks and livelocks do not make any progress.
In a livelock scenario, threads do still execute.
-In a deadlock scenario,
..

while (true)
 Acquire R0
 if R1 is free, then
 Acquire R1
 do work
 Free R1, R0
 return
 else
 Free R0

while (true)
 Acquire R1
 if R0 is free, then
 Acquire R0
 do work
 Free R0, R1
 return
 else
 Free R1

threads are stuck and do not execute anything actively.
346/23/25

ABCD: Identify the problem

l What synchronization problem is present in this code with
two threads (left and right), where M0 and M1 are mutexes.

(a) Race case
(b) Non-reentrant
(c) Livelock
(d) Deadlock

Answer: B

global int cnt = 0;

while (true):
 lock M0

 if cnt % 2 == 1 then:
 lock M1
 cnt++
 unlock M1

 unlock M0

while (true):
 lock M0

 if cnt % 2 == 0 then:
 lock M1
 cnt++
 unlock M1

 unlock M0

356/23/25

Summary
l Mutex
-Used for Mutual Exclusion from a critical section.
-Guarantees only one thread can hold the lock

l Critical Section
-Area of the code which accesses a shared variable that
must not be concurrently accessed from another thread.

l Thread safe: Correctly runs with multiple threads.
l Reentrant: Correctly runs when called again while running (same thread?)
l Deadlock: Two threads blocking each other. Necessary conditions:
-Hold and wait
-Circular wait
-Mutual exclusion
-No preemption

366/23/25

