
Threads

Slides 7CMPT 201 16/9/25

Instructor: Linyi Li
Slides adapted from Dr. B. Fraser

Topics

l What is thread?
l How can two “threads of execution”

share the same memory space?
l How can we start and work with threads?

26/9/25

What’s a Thread

l What is a Thread?
..

-Similar to a process but it's lighter weight.
-Sometimes called..

l Main Thread
-A process always has at least one thread,
called main thread: from main()

A thread is a unit of execution.

a "light-weight process".

36/9/25

Details

l Can find more info in OSTEP book
(more depth than we require)

-Chapter 26 Concurrency: An Introduction
https://pages.cs.wisc.edu/~remzi/OSTEP/threads-intro.pdf
-Chapter 27 Interlude: Thread API
https://pages.cs.wisc.edu/~remzi/OSTEP/threads-api.pdf

46/9/25

https://pages.cs.wisc.edu/~remzi/OSTEP/threads-intro.pdf
https://pages.cs.wisc.edu/~remzi/OSTEP/threads-intro.pdf
https://pages.cs.wisc.edu/~remzi/OSTEP/threads-intro.pdf
https://pages.cs.wisc.edu/~remzi/OSTEP/threads-api.pdf
https://pages.cs.wisc.edu/~remzi/OSTEP/threads-api.pdf
https://pages.cs.wisc.edu/~remzi/OSTEP/threads-api.pdf

Threads vs Processes

56/9/25

Thread vs Process
l If threads and processes execute in parallel on

different cores, then what are the difference?
-..

fork() creates a child process with its own address
space.
-..
text, data, bss, and heap segments.

l Each thread gets its own:
-stack
-registers
-program counter (running different function).
-errno

Text
Data
BSS

Heap

Kernel

Memory
Mapping

Thread 2’s
Stack

Process A’s
address space

Main
Thread’s

Stack

Processes have
separate (virtual) address spaces.

Threads share the same address space:

66/9/25

Benefits on Threads & Processes

l Benefit of a thread
-Threads in a process share the same addresses
..
-E.g., any thread can read from or write to a global variable.
Can pass pointers between them.
-..

l Benefit of a process
-..

hence data sharing is easy.

Threads faster to create (lightweight)

Memory isolation

76/9/25

POSIX Threads

86/9/25

man pthreads

l man pthreads
Review sections:

-Description: What’s shared & not
-Return value & errno
-Thread ID
-Thread safe Functions

96/9/25

Common Functions

l pthread_create()
-Check man page
-pthread_t: this is the type used for thread IDs.
-..
(that will run as a thread).
-void *arg, passed in.

lvoid* can be cast to any pointer.
Use a struct to pass multiple arguments.

-pthread_attr_t specifies various attributes of the new thread.

l pthread_exit() terminates the calling thread.
-Done implicitly when returning from thread function
return 0; // Leaving thread function!

Function pointer to a thread function

106/9/25

Common Functions

l pthread_self()
-Returns the caller's id
..

l pthread_join()
-..
-Thread return value with `void **retval`.

l pthread_detach()
-Lets the calling thread just run.
-You can use this when you don't need to return anything.

Waits until that thread terminates.

Use gettid() to be able to print Linux thread ID as a number.

116/9/25

ABCD: PThread

l Each thread gets its own...

(a)Stack

(b)Heap

(c)Text / Code

(d)stdout

Answer: A

126/9/25

ABCD: pthread_create()

l Which of the following is true about pthread_create()?

(a) It creates a new process running the provided thread start
function.

(b) It passes nothing to the function (void).
(c) It waits until the spawned thread finishes.
(d) It stores the thread_id for later user.

Answer: D

136/9/25

Pthread Activity
l [15 min] Write a program where:
-Main thread will:

lcreate another thread.
lwait until thread terminates,
lprint out the return value.

-New thread accept a string as its argument,
lprint out the argument and its own ID (use gettid()),
lreturn the length (using strlen(char*)) of the received string.

-Compile with `-pthread` compiler option:
e.g., `clang -pthread example.c`.

Start simple!
Make a thread
and print “hi”!

main() can get the number:
 void* ret_val = 0;
 pthread_join(...);
 printf(“%ul”, (uint64_t) ret_val);

Thread function can return a number:
 return (void*) 42;

146/9/25

Data Race

156/9/25

Data Race Activity

l [10 min] Activity:
write a program that has two additional threads.

-Create global variable:
int cnt = 0;
-Each new thread adds 1 to `cnt` 10 million times.
-Main thread waits for new threads, and prints `cnt`.

l Run multiple times; see output!

166/9/25

Deterministic

l Deterministic:
-..
Usually, this is what we want!
-Note that the “behaviour” might not be the same each time:
the order that threads get scheduled will be different each time.
-However, non-deterministic behaviour does not lead to
non-deterministic output unless you have a race case.
Usually, what we want to avoid!

Where the program output is the same every time.

176/9/25

Data Race Problem
l Consider the statement counter++
-It seems like `counter++` is one operation.
-..

int tmpRegister = counter; // Load from memory
tmpRegister++; // Charge value
counter = tmpRegister; // Store value to memory

l What happen if this runs on 2 threads? (assume counter = 5)
Thread 1 Thread 2
int tmp1 = counter
tmp1++
counter = tmp1

int tmp2 = counter
tmp2++
counter = tmp2

Thread 1 Thread 2
int tmp1 = counter

int tmp2 = counter
tmp1++

tmp2++
counter = tmp1

counter = tmp2

= 6

= 7
= 6

= 6

In reality, it’s more like:

186/9/25

Race Condition

l Data Race
-This is called the data race problem:
..

l Race Condition
-More generally, a race condition is a condition in which
..

l Difference between a Data Race and a Race Condition
-Very similar and related ideas.
-We’ll not get into details. For more info:
https://blog.regehr.org/archives/490

where different threads *race* to update data
and overwrite each other's result.

the correctness of a program depends on
the timing and/or order of operations.

196/9/25

https://blog.regehr.org/archives/490

Thread & Linux Scheduling

l Does Linux schedule at the process or thread level?

-Linux schedules at the thread level.
-The Linux scheduler makes no fundamental distinction between a
process and a thread; both are "tasks" from the kernel’s perspective.

l Does thread implementation in Linux require system calls?

-Yes. Both process & thread use clone system calls to create, but
with different sharing resources.

206/11/25

Summary

l Threads
-Lightweight processes that share a memory space.
-Always have main thread

l PThread
-POSIX library / API for threads
-pthread_create(), pthread_join(), ...

l Data Race
-When two threads may access the same data at the same time.

216/9/25

