
Virtual Memory

Slides 6CMPT 201 16/9/25

Instructor: Linyi Li
Slides adapted from Dr. B. Fraser

Topics

1) How can each process have its own memory space?
2) How can the OS allocate memory to processes?
3) What if we run out of memory?

26/9/25

Context:
What is the problem we are trying to solve?

36/9/25

Details

l Virtual memory is one of the most important OS concepts.
-It is also a good example that shows
..

l Can find more info in OSTEP book
(more depth than we require)

-Chapter 13 The Abstraction: Address Spaces
https://pages.cs.wisc.edu/~remzi/OSTEP/vm-intro.pdf
-Chapter 15 Mechanism: Address Translation
https://pages.cs.wisc.edu/~remzi/OSTEP/vm-mechanism.pdf
-Chapter 18 Paging: Introduction
https://pages.cs.wisc.edu/~remzi/OSTEP/vm-paging.pdf
-Chapter 16 Segmentation
https://pages.cs.wisc.edu/~remzi/OSTEP/vm-segmentation.pdf

the power of abstraction.

46/9/25

https://pages.cs.wisc.edu/~remzi/OSTEP/vm-intro.pdf
https://pages.cs.wisc.edu/~remzi/OSTEP/vm-intro.pdf
https://pages.cs.wisc.edu/~remzi/OSTEP/vm-intro.pdf
https://pages.cs.wisc.edu/~remzi/OSTEP/vm-mechanism.pdf
https://pages.cs.wisc.edu/~remzi/OSTEP/vm-mechanism.pdf
https://pages.cs.wisc.edu/~remzi/OSTEP/vm-mechanism.pdf
https://pages.cs.wisc.edu/~remzi/OSTEP/vm-paging.pdf
https://pages.cs.wisc.edu/~remzi/OSTEP/vm-paging.pdf
https://pages.cs.wisc.edu/~remzi/OSTEP/vm-paging.pdf
https://pages.cs.wisc.edu/~remzi/OSTEP/vm-segmentation.pdf
https://pages.cs.wisc.edu/~remzi/OSTEP/vm-segmentation.pdf
https://pages.cs.wisc.edu/~remzi/OSTEP/vm-segmentation.pdf

Memory Layout in the Early Days

l The entire memory was divided into two:
OS and program.

-Could run only a single program.
-However, there were many users who wanted
to run their own programs!
-Users could not share the machine, lead to
low utilization.

Memory

OS

Process

56/9/25

Early Memory Sharing Attempt

l Memory was divided into
..

l Could run multiple processes:
..

l Problems
-Each process could only use a fixed (small) size
memory region.
-..
a “bad” pointer in one process could access
another process's memory.

Memory

OS

Process A

Process C

Process D

Free

fixed-size regions.

each process used a fixed range of memory.

No protection/isolation across processes:

66/9/25

Understanding Memory

76/9/25

Address-Based Memory Operations

l Variables are a convenience for programmers:
-..
-Most instruction reads from or write to memory.

l Random Access Memory (RAM)
-..
-Unlike a hard-drive (disk) which spins like a record /
CD / DVD:
Disks cannot access all data equally fast, but are
bigger!

int i = 0;
int *ptr = &i;
int y = i + 2;

int y

int *ptr

int i 0

0x3672
052A...

2

The computer really works on the memory.

All addresses are equally fast to access.

Code

Memory

86/9/25

Locality
l At any given moment, a program is likely to be accessing

..
l Code:
-Mostly accessed sequentially
-Loops and 'if' (branches) jump around only a little usually.

l Data: Access small parts of data at once
-Variables are often accessed repeatedly (a loop), or same data
structure accessed over and over.

l ..
-recently used data is likely to be reused (i.e., loops)

l ..
-the next data you need is likely nearby previous data you used.
(e.g., an array / struct)

only a small part of its memory.

Temporal Locality:

Spatial Locality:

96/9/25

Understanding Memory Solutions

l Fundamental Properties of Memory Use
-Programs really work on memory.
-Programs access the same data over and over again
(temporal locality)
-Programs access data nearby to previously accessed data
(spacial locality)

l Can we use these to design how to share memory?

106/9/25

ABCD: Locality

l Assume a program has just
accessed memory locations 6 and 12.

-Spacial locality suggests we might soon access?

-Temporal locality suggests we might soon access?

14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

(a) 0, 3, 9
(b) 6, 12
(c) 5, 7, 11, 13
(d) 4, 8, 10, 14

(a) 0, 3, 9
(b) 6, 12
(c) 5, 7, 11, 13
(d) 4, 8, 10, 14

116/9/25

Solution:
Virtual Memory

126/9/25

Memory Abstraction

"All problems in computer science can be solved by another level of
indirection, except for the problem of too many levels of indirection."
-- David Wheeler

l Virtual memory is a mechanism to enable:
(i)..
(ii)..

l Simply put,..

l Virtual memory consists of:
-virtual address space and address translation.
-Virtual memory is a good example that demonstrates the power of
abstractions.

physical memory sharing for multiple processes
isolation of each process's memory access

a process uses virtual memory
instead of physical memory.

136/9/25

Virtual Address Space

l All memory discussed so far
..

-Virtual memory size is
..
-Virtual memory is a memory abstraction (imaginary
space) that the program & programmer operates in.
-The OS + hardware build us this imaginary space.

l Virtual vs Physical
-User-level processes works with
virtual addresses.
-Kernel-level components can deal with both
virtual and physical addresses.

Text

Data

BSS

Heap

Kernel
Space

Memory
Mapping

Stack

Virtual
Address
Space

0

0xFFF..F

Physical
Memory

Not to
scale!

has been virtual memory!

determined by the pointer size: 0 to 264-1

146/9/25

Room Analogy

l Imagine a process as a room
-It’s virtual memory space is the surface of the walls.
-There are no real walls; they are an illusion:
..

Wall panels are moved into place as needed
to make the room.

156/9/25

Room Analogy (cont)

l Imagine a process as a room
-Virtual memory space is the walls:
Pointers can point to the wall, can read/write on wall.
-Walls have 264 locations; much bigger than physical memory

l OS + hardware only put "physical" memory panels behind a few
areas of the wall.

-Operations on areas with physical panels work;
-Operations outside of those areas fail: page-faults
-E.g., reading from address 0x100 is virtual memory address.

lProgram doesn’t know (or care) which physical "panel" of
memory we are writing to.

l A physical "panel" is called either a page frame or
segment

166/9/25

Process Virtual Memory
l Each process..
-0 to 264-1 (or 232-1).

l Each address in a virtual address space is a virtual address
(physical address points to a physical memory location)

Text
Data
BSS

Heap

Kernel

Memory
Mapping

Stack

Process A’s
address space

Text
Data
BSS

Heap

Kernel

Memory
Mapping

Stack

Process B’s
address space

Text
Data
BSS

Heap

Kernel

Memory
Mapping

Stack

Process C’s
address space

Virtual Address Max
0xFFF..F

Virtual Address 0

gets its own (virtual) address space:

176/9/25

Benefits of Virtual Memory

l A process only sees its own address space,
-i.e., ..

l Temporal & spacial locality mean
..

-Don't have 16EB per process of physical memory!
-OS can swap to a file on disk areas that have not recently been
used

lMakes physical memory available for other processes.
This file is called the..

memory isolation between processes.

Swap Space

a process likely does not need all its data at once.

186/9/25

Room Analogy

l Out of Memory
-We can run out of physical memory panels for our room
-So take an "older" panel, save it to disk, and then re-use it in a new
place.

l If Needed Again
-If needed later, we take another physical memory panel and reload
the swapped out data from disk
-Map virtual memory to the correct physical memory location.
-Program never knows the difference!

l Works across multiple processes
-OS manages mapping virtual address to physical memory panels
-Panels are shared across all processes

196/9/25

Address Translation

206/9/25

Address Translation

l Process knows virtual addresses;
hardware needs physical address

-Must translate between them!

l Virtual Memory is..
-Each page is
..
-Kernel controls the mapping
-Kernel configures hardware to translate virtual addresses into
physical addresses

divided into regions called pages

mapped to a physical memory "page frame" or just "frame"

216/9/25

Address Translation

l Consider a memory operation like:
int *ptr;
*ptr = 10;

l Steps in translation:
1.Figure out which virtual memory page *ptr is on.
2.Figure out which physical frame it maps to
3.Redirects the access to the correct physical memory frame and
address within it.

226/9/25

Address Translation

Process A’s
Virtual Address Space

Process B’s
Virtual Address Space

Physical Memory
Frames

l OS maps virtual
pages to physical
frames.

236/9/25

Address Translation

l Approaches to Mapping "Panels' to Memory
-How do we divide our virtual address space
into smaller regions ("panels" in our analogy)?

246/9/25

Paging

256/9/25

Pages

l ..
-4 KB is a popular size but modern OSs have bigger pages (e.g., 4
MB) as well.

l Example
-If we have 16KB virtual address space and page size 4K
-How many pages? ..
-Here are 2 process, each with its own virtual address space. Page
numbers are in binary:

page 11
page 10
page 01
page 00

Process A’s
Address Space

page 11
page 10
page 01
page 00

Process B’s
Address Space

We need 4 pages.

Virtual address space is divided into fixed-size pages

266/9/25

Page Frames

l Physical memory divided into
..

-Each is the same size as pages.

l Example:
if we have 8KB of memory with 4KB page size = 2 frames
(#'s in binary)

page frame 01
page frame 00

Physical Memory
Frames

page frames (or frames)

276/9/25

Address Translation

l A virtual address is divided into two parts:
-..

l Example:
4 pages, each of 16 bytes.

-4 pages need..
-16 bytes need..
-6-bit virtual address space divided into
2-bit page numbers and 4-bit offsets

lAddress 100101 is divided into
page number 10 and offset 0101.
lAddress 000010 is divided into
page number 00 and offset 0010.

2-bits to pick between pages.
4-bits of offset into the page.

<page number, offset>

286/9/25

ABCD: Address Translation

l Consider a computer where
-each page is 32 bytes
-have 8 pages

What does the memory address 10011010b mean?
(a) Page 10011b, Offset 010b
(b) Page 100b, Offset 11010b
(c) Page 010b, Offset 10011b
(d) Page 11010b, Offset 100b

296/9/25

Page Table

l When a process accesses a (virtual) address,
..

-The offset does not change.

l Kernel maintains a page table per process.
-Maps page number (virtual) to
a page frame number (physical).

page frame 01
page frame 00

Physical Memory
Framespage 11

page 10
page 01
page 00

Process A’s
Address SpacePage

Number
Page Frame

Number
00 01
10 00

Page Table

paging translates the address's page number
to a page frame number.

306/9/25

Address Translation Example
l Example:

Convert virtual address 101011b to physical address
-Assume 16 byte pages.
So, offset is..
-Address is 6 bits therefore
..
-Page: 10b ..
Offset: 1011b (unchanged)
-So physical memory 001011b

page frame 01
page frame 00

Physical Memory
Framespage 11

page 10
page 01
page 00

Process A’s
Address Space

Page
Number

Page Frame
Number

00 01
10 00

Page Table

4 bits

Page is 2 bits (4 pages)
Maps to page frame 00

316/9/25

Number of Pages

l There are vastly more (virtual) pages
than (physical) page frames.

-..
-OS only maps a page to a frame when needed (more later).

l Hardware supports converting pointers from virtual to
physical addresses

-OS configures the page table
-HW looks mappings at runtime

Cannot map all pages to frames at once!

326/9/25

Page Table Size

l Page Table Size
-If page numbers use n bits,
the maximum possible number of pages is 2n.
-If offsets use m bits,
the maximum possible page size is 2m.

l For example,
-Page size 4 KB on a 32-bit architecture.
-m =..
-n =..
-Therefore can have 220 pages.
This is 1M pages!

12 (212 = 4096)
20 (32 bits - 12 for offset),

336/9/25

ABCD: Address Translation

l Given the page table below, what is the physical address for
(virtual) address 0010 1011 1101 1100b?

(a)<000001, 1111011100>

(b)<001010, 1111011100>

(c)<111010, 1111011100>

(d)<000101, 1111011100>

Page
Number

Page Frame
Number

000001 001010

111010 000011

101001 000111

001010 000101

Page Table

346/9/25

Segmentation

356/9/25

Segmentation

l Segmentation is another solution
..

l Segmentation is similar to paging:
-Memory is divided it sections
-Each section is located in physical memory
-Virtual memory addresses are translated to physical memory
addresses.

l Segmentation is different because:
-..

-E.g., text segment, data segment, stack segment, heap segment, ...

for mapping virtual memory to physical memory

each memory area is not a fixed size,
but rather a meaningful region

366/9/25

Segmentation Address translation

l Segmentation Address translation
-Must still translate virtual memory address to physical memory
address (beyond scope of this course)

l Modern OSs typically use paging rather than segmentation.

376/9/25

Segmentation and External Fragmentation

l External Fragmentation (recall)
When free space is broken up into
many different places.

-Over time, with segmentation, free space gets
broken up into different places.
-..

-Since segments are of different sizes,
no one free block might be big enough, even if
we have enough total free memory.

l Example:
-Unable to allocate 40KB segment

Used by a segment

Free (32KB)

Used by a segment

Used by a segment

Used by a segment

Free (32KB)

Free (24KB)

Physical Memory

When trying to allocate a new segment,
we need a contiguous block of memory.

386/9/25

Paging and External Fragmentation

l ..

-We only have one page size,
so when you need a page..

l Internal Fragmentation
-Since pages are handed out at a fixed size,
there is very likely to be wasted space at the end of a page.
-It happens with paging.
-Combat it by keeping page size small.

Paging cannot suffer external fragmentation
since every page is of the same size:

Single
page Data inside page

Internal
Fragmentation:
Wasted space

any page will do!

396/9/25

Running out of Memory

406/9/25

Out of Memory
l Out of memory
-Limited physical memory but virtual memory space is vast!
-Can't bring in all virtual pages to physical memory.
What do we do?

l Demand paging & swapping
-Demand paging:
..
-Swapping:
if we don't have a free page frame, kick out a page already in
memory to disk and bring in the new page.
-Swap space:
disk space dedicated to store swapped-out pages.

l How do we decide which memory page to swap out?
We need a page replacement algorithm

a page is brought into memory only when needed

416/9/25

Demand Paging
l Why does demand paging work?
-Insight: ..

-This is based on locality of access.

l Recall:
-Temporal locality: if a program accesses a memory location, it is likely
that it's going to access it again in the near future.
-Spatial locality: if a program accesses a memory location, it is likely that
it's going to access other memory locations nearby.

l ..
-when a memory location is accessed, it brings in the region that the
location belongs to, not just the specific memory location.

l Demand paging & swapping leverage temporal locality:
-..recently used pages are already in memory.

A typical program only accesses a
small portion of its memory space.

Paging leverage spatial locality:

426/9/25

Page Replacement Algorithms

l Page Fault
-when a memory location is accessed but
..
-we need to bring in the page into a memory frame.

l The Question
-When the memory is full (i.e., all page frames are used) and we
need to load a new page,
..

the corresponding page is not found in physical memory.

which page do we swap out to disk to make space?

436/9/25

Optimal Page Replacement Algorithm

l Optimal page replacement algorithm
..
-This assumes that we know the future (which is impossible). Thus,
this is only a theoretical exercise.
-Page replacement algorithms try to approximate this as much as
possible.

picks the page that will not be used for the longest time.

446/9/25

Optimal Page Replacement Example

l Example
-Memory has 4 page frames.
-Memory page access order (by page number):
1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

1

Page Access: 1,

1
2

2,

1
2
3

3,

1
2
3
4

4, 1, 2,

1
2
3
5

5,

4
2
3
5

4,1, 2, 3, 5

Page 4
Replaced

Page 1
Replaced

Page Faults:

Page
Replacement:

Page 4 is used
last in the future,

so replace it.

1,2,3 are all
never used

again

456/9/25

FIFO (First In, First Out)
l FIFO
-Keeps track of when a page was brought in to memory.
-..

1

Page Access:

1
2

1
2
3

1
2
3
4

5
2
3
4

4
1
2
3

Page Faults:

Page
Replacement:

1, 2, 3, 4, 1, 2, 5, 4,1, 52, 3,

5
1
3
4

5
1
2
4

4
5
2
3

5
1
2
3

l 10 page faults!
l This is simple but does not consider useful properties like locality.

The first one that was brought in gets swapped out first.

466/9/25

LRU (Least Recently Used)
l ..
-It tries to approximate the optimal algorithm.
-It tries to infer the future based on past.

1

Page Access:

1
2

1
2
3

1
2
3
4

1
2
5
4

1
2
4
3

Page Faults:

Page
Replacement:

1, 2, 3, 4, 1, 2, 5, 4,1, 52, 3,

5
2
4
3

1
2
5
3

l 8 page faults
l Tracking access time is not simple to implement. Approximate it?

Replace page that has not been used for longest period.

476/9/25

ABCD: LRU Paging
l Consider the following computer:
-4 page frames
-Uses LRU page replacement algorithm

How many page faults are there for the following sequence of
page accesses?

-1, 2, 3, 4, 5, 2, 4, 5, 1, 5

(a) 2 page faults
(b) 5 page faults
(c) 6 page faults
(d) 10 page faults

* * * * *(1) *(3)

486/9/25

Second-Chance
l Second Change is an approximation of LRU
-Each page has a reference bit (ref_bit), initially = 0
-..
-We maintain a moving pointer to the next (candidate) “victim”.

l When choosing a page to replace,
check ref_bit of victim:

-..
-Else

lClear ref_bit to 0.
lLeave page in memory
..
lMove pointer to next page (wrapping around)
lRepeat till a victim is found.

When a page is accessed, hardware sets ref_bit to 1.

Ref.
Bit

Pages

0 ...
1 ...
1 ...
0 ...

Next
Victim

If ref_bit == 0, replace it.

(give it another chance).

496/9/25

Second Chance Example

l Example
-Assume we have triggered a page fault.
-No empty pages, so must replace.
-Let’s find the victim page to replace.

Ref.
Bit

Pages

0 ...
1 ...
1 ...
0 ...

Next
Victim

Initial State

Ref.
Bit

Pages

0 ...
0 ...
1 ...
0 ...

Clear flag;
Move on

Ref.
Bit

Pages

0 ...
0 ...
0 ...
0 ...

Clear flag;
Move on

Ref.
Bit

Pages

0 ...
0 ...
0 ...
1 changed

Found
Victim Page!

506/9/25

ABCD: Second Chance

l Using second chance page replacement algorithm, which
page will be the next victim?

Ref.
Bit

Pages

1 Page 110
1 Page 111
0 Page 101
1 Page 001Next

Victim

(a) Page 110b
(b) Page 111b
(c) Page 101b
(d) Page 001b

516/9/25

Thrashing

526/9/25

Thrashing

l If a process access a large amount of memory,
OS could keep needing to bring new pages into memory

-Example:
An process that jumps through a huge amount of memory, reading
one value every 4K (once per page).

l Thrashing:
-

a process is too busy swapping in and out pages
and not really executing its program on the CPU.

536/9/25

Summary
l Virtual Memory
-Process works only in the virtual memory space.
-OS can flexibly share memory between processes.
-Gives process memory isolation.

l Address Translation
-Converting (virtual) address to physical address.

l Paging
-Virtual memory broken up into identical size pages.
-Physical memory broken up into page frames (“frames”).

l Segmentation
-Like paging, but different size regions (segments).

l Page replacement algorithms:
-Optimal, FIFO, LRU, Second Chance

546/9/25

