
Memory Management

Slides 5CMPT 201 15/29/2025

Instructor: Linyi Li

Slides adapted from Dr. B. Fraser

Topics

1) What is the layout of memory?

2) How does the heap work?

a)Getting space from the OS

b)Tracking free space

c)Freeing allocated space

25/29/2025

Context

⚫ Memory allocation / deallocation
−Heap is used for dynamically allocated memory.

⚫Usually use: malloc() or calloc(), and free().

−How could we actually implement malloc() / free()?

(This will help us really understand low-level memory management)

⚫ We are not talking about physical memory here.
User processes can only use virtual memory, not physical memory.

35/29/2025

Details

⚫ Can find more info in OSTEP book
(more depth than we require)

−Chapter 13 The Abstraction: Address Spaces

https://pages.cs.wisc.edu/~remzi/OSTEP/vm-intro.pdf

−Chapter 14 Interlude: Memory API

https://pages.cs.wisc.edu/~remzi/OSTEP/vm-api.pdf

−Chapter 15 Free-Space Management

https://pages.cs.wisc.edu/~remzi/OSTEP/vm-freespace.pdf

45/29/2025

https://pages.cs.wisc.edu/~remzi/OSTEP/vm-intro.pdf
https://pages.cs.wisc.edu/~remzi/OSTEP/vm-intro.pdf
https://pages.cs.wisc.edu/~remzi/OSTEP/vm-intro.pdf
https://pages.cs.wisc.edu/~remzi/OSTEP/vm-api.pdf
https://pages.cs.wisc.edu/~remzi/OSTEP/vm-api.pdf
https://pages.cs.wisc.edu/~remzi/OSTEP/vm-api.pdf
https://pages.cs.wisc.edu/~remzi/OSTEP/vm-freespace.pdf
https://pages.cs.wisc.edu/~remzi/OSTEP/vm-freespace.pdf
https://pages.cs.wisc.edu/~remzi/OSTEP/vm-freespace.pdf

Prerequisites

55/29/2025

What you already know

⚫ This lecture assumes you know:
−Data structures used for memory management:

array, struct, linked lists

−Able to use and understand malloc() and free() in C.

−How to implement a singly- and doubly-linked list in C.

−The stack and the heap:

⚫How a program's variables use stack and heap in C

⚫How variables are placed in the stack and heap.

65/29/2025

Linked Lists

struct Node {
 int data;
 struct Node *next;
};

// Create a new node with the given data
struct Node *createNode(int data) {
 struct Node *newNode
 = malloc(sizeof(*newNode));
 newNode->data = data;
 newNode->next = NULL;
 return newNode;
}

// Insert a new node at the end of list
void append(struct Node **head, int data) {
 // Code together!
}

// Traverse and print the linked list
void traverse(struct Node *head) {
 // Code together!
}

int main() {
 struct Node *head = NULL;

 // Append elements to the list
 append(&head, 1);
 append(&head, 2);
 append(&head, 3);

 // Traverse and print the list
 printf("Linked List: ");
 traverse(head);

 // Remember: free memory when done
 struct Node *current = head;
 while (current != NULL) {
 struct Node *temp = current;
 current = current->next;
 free(temp);
 }
 head = NULL;

 return 0;
}

single-linked-class.c 75/29/2025

Memory Layout

Text

Data

(initialized)

BSS

(uninitialized)

Heap

(grows ↑)

Kernel Address Space
(mapped into process’s

virtual memory)

Memory Mapping
(grows ↓)

Stack
(grows ↓)

Read only

Our Focus Today!

malloc() to dynamically

allocate variables.

0xFFFF FFFF FFFF FFFF = (2n - 1)

0x0000 0000 0000 0000

Addresses

Libraries:

libc, libpthread..

Program break

Local variables,

stack frame

Unallocated

space

Global & static

data

“Block Starting

Symbol”

Code

95/29/2025

• brk() and sbrk()

105/29/2025

Getting More Memory

⚫ Program Break
−..

(actually end of BSS; but grows to be heap)

−Above the Program Break is unallocated space.

⚫ More Space
−..

−Linux uses brk() and sbrk() to move the program

break.

Text

Data

(initialized)

BSS

(uninitialized)

Heap

(grows ↑)

Kernel Address

Space

Memory Mapping
(libs; grows ↓)

Stack
(grows ↓)

Used by Linux to mark end of heap

OS moves the program break

higher to expand the heap

115/29/2025

man sbrk
⚫ man sbrk
−OS increases size heap.

−It’s a syscall: overhead!

⚫ Don’t call sbrk() often
−malloc() (user-level) calls

sbrk() (kernel) to..

−malloc()..

⚫ How can malloc() do that?
−Allocation strategies!

−Deallocation strategies!

get big block of memory

hands out small pieces

of memory for each

request.

125/29/2025

ABCD: Memory Layout

Text

Data

(initialized)

...

(uninitialized)

...

(grows ↑)

...

Memory Mapping
(grows ↓)

...
(grows ↓)

(a) BSS

(b) Heap

(c) Program Break

(d) Stack

Q1

Q2

Q3

⚫ What is the name of each
memory segment?

135/29/2025

Managing Dynamic Memory

Overview

145/29/2025

Memory Allocator

⚫ Memory Allocator: manages the heap
−For each allocation request,

..

−It tracks of which parts of the heap are not

used.

⚫ Fragmentation
−Over time the application allocates and frees

memory regions.

−This fragments memory into

..

Heap

Used

Used

Used

Used

Used

Used

Used

Freed

Freed

Freed

Freed

it returns a pointer to an unused

(or free) region inside the heap.

broken up pockets of used and freed

memory.

155/29/2025

Track Free Space

⚫ Track free regions (blocks) in
..

−We don't track used regions;

we are given back regions

from calls to free().

Heap

Used

Used

Used

Used

Used

Used

Used

Freed

Freed

Freed

Freed

a linked list of free blocks.

165/29/2025

Linked List Management

Free

Free block

Used

Free

HeadHead

Used

Free

Head

Used

Freed

Free

Head

Used

Freed

Free

Head

Used

Used

Freed

Free

Head

Freed

Used

Allocate Memory

Pick first block that is
big enough; split it.

Another

allocate

Free 1st Block

Freed block goes
at head of list

External Fragmentation

Repeated allocate/free can
fragment free space.

175/29/2025

Linked List Management

⚫ Free Blocks Linked List
−We have a linked list of free blocks.

−..

⚫ Basics of Allocation - malloc()
−..

−Remove it from the linked list.

−Split the free block into two blocks: allocated and free.

−Insert the new free block back into the head of the linked list.

−Return the allocated block to the caller.

⚫ Basics of Deallocation - free()
−Inserting the given block at head of the linked list.

Head points to the most recent free block.

Pick a free block from the linked list.

185/29/2025

Linked-list Without Dynamic Allocation

⚫ Linked List of Free Memory
−We’ve see how to manage free memory using a linked list of free

blocks.

−But, how do we normally create nodes in a Linked List?

..

−So, how do we create a linked list without dynamic allocation?

⚫ In-Place linked List
−..

to track size of the block and pointer to next free block

−Perform coalescing:

combines consecutive free blocks into a larger single free block.

Dynamic allocation!

Create a header on each free block

195/29/2025

Head
Size

= free + header

Header

16 bytes

Free

next = null

size = 256
0

255

In-Place Linked List
Address

(0-255)

⚫ Example with the
heap size of 256 bytes.

⚫ Build linked-list of blocks.

⚫ Each free and allocated
block has a header

⚫ Assume size and next

are 8 bytes each.

Address of

next node

Heap

205/29/2025

Free

next = null

size = 256

Allocated

(100 bytes)

next = null

size = 116

Free

next = null

size = 140

Allocated

(50 bytes)

next = null

size = 66

Free

next = null

size = 74

Free

next = 182

size = 116
0

255

0

255

116

Allocated

(100 bytes)

next = null

size = 116
0

255

116

182

Allocated

(50 bytes)

next = null

size = 66

Free

next = null

size = 74

0

255

116

182

Free

next = 0

size = 66

0

Free

next = 182

size = 116

Free

next = null

size = 74

255

116

182

Initial State
Free

50 bytes

Free

100 bytes

Allocate

100 bytes

Allocate

50 bytes

Example: In-Place Linked List

21

ABCD: Linked List

⚫ What was the order in which these blocks
were freed?
(Listed in order of first freed to last freed)

B

next = null

size = 66

0

C

next = 116

size = 116

A

next = 0

size = 74

255

116

182

(a) A then B then C

(b) A then C then B

(c) B then C then A

(d) C then B then A

225/29/2025

External Fragmentation

⚫ External Fragmentation
−..

−But each allocation request can only be satisfied by a single block

(cannot split it up).

−Even if total free memory is enough, may not have

..

⚫ Coalescing
−Process of combining consecutive free blocks into bigger blocks.

⚫ Internal Fragmentation
−Similar problem of unused space inside blocks; More during virtual

memory.

Free memory is fragmented into smaller blocks.

one contiguous free block to satisfy an allocation request.

235/29/2025

Coalescing

⚫ Merge consecutive
free blocks.

Free

next = 182

size = 116

Free

next = 0

size = 66

Free

next = null

size = 74

Before

Free

next = null

size = 255

After

Coalescing

245/29/2025

Finding a
Free Block

255/29/2025

Allocating Memory

⚫ Allocating Memory
e.g., malloc()

Requires finding a big
enough memory block to
satisfy the request.

Traverse

linked list of

free block

Find

Big Enough

Block

Split block into

2 blocks

Allocated Block

Requested size

(returned to caller)

Extra space

(new free block)

Link new free

space block as

head

265/29/2025

Allocating Memory: First Fit

⚫ First-fit
−..

⚫ Advantage
−implementation simplicity

−fast: it only needs to find the first

big enough block.

⚫ Disadvantage
−can pollute the beginning of the

free list with small blocks

−leads to more search time for

bigger allocation requests.

Traverse

list

Find

First Block

Split

block
Allocated

Block

Extra

space

New

head

Find the first block

that is big enough.

275/29/2025

Allocating Memory: Best Fit

⚫ Best-fit
−Find the smallest free block that is big

enough.

⚫ Advantage
−..

⚫ Disadvantage
−Speed

must search the entire list (unless

ordered by size which has additional

implementation complexity).

−Fragmentation

may create many small free blocks,

leading to more chances of external

fragmentation.

Traverse

list

Find

Best Block

Split

block
Allocated

Block

Extra

space

New

head

reduces wasted memory space.

285/29/2025

Allocating Memory: Worst Fit

⚫ Worst-fit
−Find the largest free block.

⚫ Advantage
−..

⚫ Disadvantage
−must search the entire list.

Traverse

list

Find

Worst

Block

Split

block
Allocated

Block

Extra

space

New

head

produces large leftover free blocks.

295/29/2025

ABCD: Free Space

⚫ A memory allocation system is asked to
allocate 50 bytes. Which block is allocated
if it is using...

⚫ First fit

⚫ Worst Fit

⚫ Best Fit

B

next = null

size = 66

0

C

next = 116

size = 116

A

next = 0

size = 74

255

116

182

(a) A

(b) B

(c) C

(d) None of them.

305/29/2025

Summary

⚫ Memory Segments

−text, data, BSS, heap, memory mapped, stack, kernel.

−Program break and effect of brk() and sbrk()

⚫ Memory Allocator

−Linked list of free memory

−New free blocks go first in the list

⚫ Fragmentation

−External Fragmentation

−Coalescing algorithm

⚫ Block selection algorithms

−(first, smallest, biggest) fit

315/29/2025

	Slide 1
	Slide 2: Topics
	Slide 3: Context
	Slide 4: Details
	Slide 5
	Slide 6: What you already know
	Slide 7: Linked Lists
	Slide 9: Memory Layout
	Slide 10
	Slide 11: Getting More Memory
	Slide 12: man sbrk
	Slide 13: ABCD: Memory Layout
	Slide 14
	Slide 15: Memory Allocator
	Slide 16: Track Free Space
	Slide 17: Linked List Management
	Slide 18: Linked List Management
	Slide 19: Linked-list Without Dynamic Allocation
	Slide 20: In-Place Linked List
	Slide 21: Example: In-Place Linked List
	Slide 22: ABCD: Linked List
	Slide 23: External Fragmentation
	Slide 24: Coalescing
	Slide 25
	Slide 26: Allocating Memory
	Slide 27: Allocating Memory: First Fit
	Slide 28: Allocating Memory: Best Fit
	Slide 29: Allocating Memory: Worst Fit
	Slide 30: ABCD: Free Space
	Slide 31: Summary

