
Processes
waitpid(), errno

Slides 2cCMPT 201 15/19/25

Instructor: Linyi Li
Slides adapted from Dr. B. Fraser

Topics

1) How can a parent process wait for a child?
2) How can we know what errors have happened?

25/19/25

Waiting for a child:
wait()

35/19/25

wait()

l wait()
..
-Family of calls; we'll usually use waitpid(),
but refer to them as just wait()

l Common usage
pid_t pid = fork();
if (pid != 0) {

 // Parent waits for child process to finish
 if (waitpid(pid, ...) == -1) {
 // Exit on error
 }

} else {
 // Child does something.. exec?
}

waits on a child process's termination and obtains its status.

45/19/25

man 2 wait

A lot to understand in just a
single syscall!

What are these options?

55/19/25

Parts of waitpid()

l pid
-..

l wstatus
-pointer to an int to store..
-_Nullable tells reader OK to be NULL

l options
-we'll leave as 0; can specify non-blocking (don’t wait)
e.g., WNOHANG

pid_t waitpid(pid_t pid, int *_Nullable wstatus, int options);

PID to wait on or -1 for any child

exit status of process.

65/19/25

wstatus

l waitpid() takes a pointer for wstatus
-Calling code (e.g., main())
..
-waitpid() given a pointer to this space
-waitpid() writes an answer into that space

l Effectively, main() declares a variable so waitpid() has
somewhere to write info; called an..

pid_t pid = fork();
if (pid) {
 int wstatus = 0;
 if (waitpid(pid, &wstatus, 0) == -1) {
 perror("waitpid");
 exit(EXIT_FAILURE);
 }
}

declares an int local variable (allocates space)

output parameter

75/19/25

wait() Status Check Macros

l Why did the child terminate?
(wstatus(): is a complicated value)
-Normally: exit() or return from main

-Terminated by Signal?

if (WIFEXITED(wstatus)) {
 printf("Reason: %d\n", WEXITSTATUS(wstatus));
}

if (WIFSIGNALED(wstatus)) {
 printf("Terminated by signal # %d\n",
 WTERMSIG(status));
}

85/19/25

Activity: wait()

l (10 mins) Write a program that:
-Creates a child process
-Child process runs `ls -a -l`
-Parent process waits for the child process to terminate using
waitpid()
-If child exits normally, print the exit status.

l Hints:
-OK to reuse previous code examples from class.
-Use execl(); pass in arguments separately

See code slide: “waitpid() on child”

95/19/25

Zombies and Orphans

105/19/25

Zombies

l What happens when an application terminates?
-OS retains some state information of terminated processes
(so parent can find out reason for exiting)
-This takes up some memory.
-Calling wait() on a terminated process frees this memory.

l Zombie
Process state where child process terminates
..

(It's dead, but not completely)
-Having many zombies uses kernel resources;
so important to always wait() on child process.

but the parent process hasn't called `wait()` yet.

115/19/25

Orphans

l Orphan
-This is the state where..

-Orphan processes no longer have a parent process.

l Linux handling of Orphan Processes
-Orphan child process becomes a child process of init
-init calls wait() on all child processes

the child process is running
but the parent process has terminated.

Generate image: https://deepai.org/125/19/25

ABCD: wait()

l Which of the following is true about wait()?
(a) wait() takes care of orphans.
(b) wait() combats the spread of zombies.
(c) wait() is a replacement for `sleep()`.
(d) wait() allows child process to get input from parent.

Answer: B

135/19/25

What went wrong?
errno

145/19/25

man errno

l Run:
man errno

-What do you notice about it?

l Look at:
-Description
-When is it useful?
-What is its type?
-How can my program get access to it?

155/19/25

errno & perror
l errno is an integer variable that is..

-Adds more information about which error has occurred.
-It is defined in errno.h
-C can print an explanation for you from just the errno
using perror(“your message here”)

l errno is similar to wstatus from wait():
-Status code set by a system call if there’s an error.

if (somecall() == -1) {
 if (errno == EACCESS) {
 printf("You don't have access.\n");
 } else {
 perror("somecall() failed")
 }
}

set by system calls and library functions
when there is an error.

165/19/25

Demo: fork-bomb with errors

l fork() sets errno on failure
-man fork
Checkout possible
errno values.

l Demo?
-ulimit -S -u 100
fork-bomb with error output

#include <errno.h>
#include <stdio.h>
#include <unistd.h>

int main() {
 while (1) {
 if (fork() == -1) {
 char *str = NULL;
 switch (errno) {
 case EAGAIN:
 str = "EAGAIN";
 break;
 case ENOMEM:
 str = "ENOMEM";
 break;
 case ENOSYS:
 str = "ENOSYS";
 break;
 default:
 break;
 }
 perror("fork");
 printf("%s\n", str);
 }
 }
} 175/19/25

Code from Activities

185/19/25

waitpid() on child
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <wait.h>

int main() {
 pid_t pid = fork();

 if (pid) {
 int wstatus = 0;
 if (waitpid(pid, &wstatus, 0) == -1) {
 perror("waitpid");
 exit(EXIT_FAILURE);
 }

 if (WIFEXITED(wstatus)) {
 printf("Child done with exit status: %d\n", WEXITSTATUS(wstatus));
 } else {
 printf("Child did not exit normally.\n");
 }
 } else {
 if (execl("/usr/bin/ls", "/usr/bin/ls", "-a", "-l", NULL) == -1) {
 perror("execl");
 exit(EXIT_FAILURE);
 }
 }

 return 0;
}

195/19/25

Summary

l Waiting on your children:
wait(), waitpid()

-Pass &wstatus to find out why child terminated.
-Terminated process becomes a zombie until waited on.
-Terminating the parent creates orphans processes.

l Use errno to find out info
-Print error message to screen with perror().

205/19/25

