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Topics

1) How can we create a new process?
2) How can we run a different program?

.. Wait what? Why are these two different?!?

25/19/25



Making a New Process
fork()
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Making a New Process

l Each process has its own address space:
-Changing a variable's value in one process
..
-..
-Process can only communicate with each other through the OS, and only 
if they both agree.

l Making a new process:
-Initial process (the .. ) wants to make a new process (the .. )
-Parent will call fork() to have the OS start a new process.
-fork() is a system call (syscall), as well as a POSIX function.

does not affect any variables in the other process.
Pointers in one process cannot access memory of the other.

parent child
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fork()

l fork() creates a child process that is
..

-fork() is called once, but..
1. In the initial process (parent), just as we expect
2. ..

l Analogy: It's like waking up after being cloned.
-Are you the original person?
-Are you the clone?

l fork() returns a process ID (PID):
-For the parent, ..
(or -1 on failure).
-For the child, ..

an identical copy of the calling process.
it returns twice!

In the new process (child)!

fork() returns the process ID of the child

fork() returns 0.
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man fork() 

l Checkout its return value.

65/19/25



Activity: fork()
l (5 mins) Write a program that:
-Calls fork()
-Keeps calling sleep() with some timeout value.

l Hint
-Modify sleep() example.
-Get more info: man fork
-You need to write one line of code.

l Discussion
-Run it; check btop in tree mode. 
There should be a new child process.
-Look at the PID in btop
-Kill both processes.
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Activity: fork() Bomb!
l (5 mins) Write a fork bomb
-i.e., a program that keeps calling fork(). 
-DO NOT run this (yet). OK to compile it!
-Or run before ulimit -S -u 1000 in terminal

l Demo fork-bomb
-This might kill the container. 
-Docker might also not respond.

l Why did this happen?
-Each process calls fork().
-Exponentially many processes.
-Denial of service attack by consuming kernel resources.

By Dake - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=1662868
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Understanding fork()
l Understanding fork
-We have one C program, which clones 
itself with fork()
-Until we call fork(), 
there is only one process.

l fork() "returns twice"; 
once into each process.

-The parent and the child are..

 
-After fork() each process executes 
independently
-Both processes (and the shell!) all share 
the screen, so output gets mixed up.

int main()
{
   pid = fork();
   if (pid == ...) {
      printf(“Parent!”);
   } else { 
      printf(“Child!”);
   } 
}

At the start: one process

int main()
{
   pid = fork();
   if (pid == ...) {
      printf(“Parent!”);
   } else { 
      printf(“Child!”);
   } 
}

int main()
{
   pid = fork();
   if (pid == ...) {
      printf(“Parent!”);
   } else { 
      printf(“Child!”);
   } 
}

After fork(): two processes
the same program 
(same source file).
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fork() with PIDs

l (15 mins) Write a program that:
1. Print its PID and its parent's PID

l`man getpid` and `man getppid` on getting the PIDs.
2. Calls fork()

lIf parent: print "parent", its PID, and the child PID
lIf child: print "child", its PID, and the parent's PID. 

 

l Hints
-This is a single program, but becomes multiple processes
-The parent and the child need to do different things. 
-Use `if-else` on the return value of `fork()` to differentiate the behaviour.
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ABCD: fork()

l How many processes will have been created by running 
this code (launching this program counts as 1)?

l What number will this code output?

(a)2

(b)3

(c)4

(d)7

(a)2

(b)3

(c)4

(d)7

b)a)
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Bonus Activity

l Write a program that:
-Spawns 10 child processes.
-Each child finds 10 big prime numbers.
-Parent process waits 10s and exits.

lWhile waiting, parent prints "Still waiting..." each second
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Replace current program in Process
exec()
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Purpose of exec()

l When called, exec() will:
-..
from this process's memory
-..
-..

l exec() completely replaces the calling process; 
it is replaced by a new program.

Remove the currently running program

Load a new program into memory.
Start executing the new program.
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ABCD: exec() Idea

l What words will the following pseudo-code program output?

 
l What happens to rest of a program after calling exec()?
-It won't get executed; it's replaced in memory.
-Analogy:
If a process is like a body, 
then exec() is a brain transplant.

(a) Hi
(b) Hi, Bye
(c) Hi, Bye, Bye,
(d) Hi, Bye, Hi, Bye,

int main()
{
   printf(“Hi\n”);
   fork();
   exec(....);
   printf(“Bye\n”);
}
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man 3 exec

l Many different 
exec() flavours.
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exec() Flavours
l exec() family has functions like:
-execl(...), execv(...)
execlp(...), execvp(...)
execle(...), execvpe(...)

l l / v  How to pass command line arguments:
-If it has an ‘l’, means pass each argument individually:
execl(“/bin/echo”, “/bin/echo”, “Yes!”, “No!”);
-If it has a ‘v’, means pass arguments together in array:
char* args[] = {“/bin/echo”, “hello”, “world”};
execv(“/bin/echo”, args);

l p Search path for the program
-With execlp() you can run “echo” and Linux will find it for you;
with execl() you need to tell Linux where to find echo.

l e Specify the environment variables as well
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Subtlety on Arguments

l When a program is executed, 
OS hands it some command-line arguments.

-args[0] (‘arg0’) is.. 
-args[1] and beyond are the other arguments.

l exec() calls take:
-What program to execute
-What arguments to pass the new process

l When calling exec() functions, you specify the arguments
-We must make these arguments start with the program name:
..
-E.g., execl(“/bin/ls”, “/bin/ls”, “/home/”, “-l”, NULL);

the program’s name on disk.

We end up listing it twice.
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Activity: exec()
l (15 mins) Write a program that...
1. Creates a child process. 
2. Parent: 
    call any one of `exec` functions that executes `ls -a`. 
3. Child:  
    call any `exec` function that executes `ls -a -l -h` 

l(same as `ls -alh` but spelled out, 
which is necessary for `exec` functions).

l  Discussion
-At end of our program, if we add: printf("%d\n", getpid())
-What will the parent print out?
-What will the child print out?
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Summary

l Create a new process using fork()
-Clones current process.
-fork() returns twice:

lParent knows it’s the parent because 
return PID is non-zero ( = the child’s PID)
lChild knows it’s the child because 
return PID is zero

l Replace a running program with exec()
-Pass in what program you want loaded 
into the current process.
-Completely replaces the process’s memory space
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