
Processes
fork(), exec()

Slides 2bCMPT 201 15/19/25

Instructor: Linyi Li
Slides adapted from Dr. B. Fraser



Topics

1) How can we create a new process?
2) How can we run a different program?

.. Wait what? Why are these two different?!?

25/19/25



Making a New Process
fork()

35/19/25



Making a New Process

l Each process has its own address space:
-Changing a variable's value in one process
..
-..
-Process can only communicate with each other through the OS, and only 
if they both agree.

l Making a new process:
-Initial process (the .. ) wants to make a new process (the .. )
-Parent will call fork() to have the OS start a new process.
-fork() is a system call (syscall), as well as a POSIX function.

does not affect any variables in the other process.
Pointers in one process cannot access memory of the other.

parent child

45/19/25



fork()

l fork() creates a child process that is
..

-fork() is called once, but..
1. In the initial process (parent), just as we expect
2. ..

l Analogy: It's like waking up after being cloned.
-Are you the original person?
-Are you the clone?

l fork() returns a process ID (PID):
-For the parent, ..
(or -1 on failure).
-For the child, ..

an identical copy of the calling process.
it returns twice!

In the new process (child)!

fork() returns the process ID of the child

fork() returns 0.
55/19/25



man fork() 

l Checkout its return value.

65/19/25



Activity: fork()
l (5 mins) Write a program that:
-Calls fork()
-Keeps calling sleep() with some timeout value.

l Hint
-Modify sleep() example.
-Get more info: man fork
-You need to write one line of code.

l Discussion
-Run it; check btop in tree mode. 
There should be a new child process.
-Look at the PID in btop
-Kill both processes.

75/19/25



Activity: fork() Bomb!
l (5 mins) Write a fork bomb
-i.e., a program that keeps calling fork(). 
-DO NOT run this (yet). OK to compile it!
-Or run before ulimit -S -u 1000 in terminal

l Demo fork-bomb
-This might kill the container. 
-Docker might also not respond.

l Why did this happen?
-Each process calls fork().
-Exponentially many processes.
-Denial of service attack by consuming kernel resources.

By Dake - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=1662868
85/19/25



Understanding fork()
l Understanding fork
-We have one C program, which clones 
itself with fork()
-Until we call fork(), 
there is only one process.

l fork() "returns twice"; 
once into each process.

-The parent and the child are..

 
-After fork() each process executes 
independently
-Both processes (and the shell!) all share 
the screen, so output gets mixed up.

int main()
{
   pid = fork();
   if (pid == ...) {
      printf(“Parent!”);
   } else { 
      printf(“Child!”);
   } 
}

At the start: one process

int main()
{
   pid = fork();
   if (pid == ...) {
      printf(“Parent!”);
   } else { 
      printf(“Child!”);
   } 
}

int main()
{
   pid = fork();
   if (pid == ...) {
      printf(“Parent!”);
   } else { 
      printf(“Child!”);
   } 
}

After fork(): two processes
the same program 
(same source file).

95/19/25



fork() with PIDs

l (15 mins) Write a program that:
1. Print its PID and its parent's PID

l`man getpid` and `man getppid` on getting the PIDs.
2. Calls fork()

lIf parent: print "parent", its PID, and the child PID
lIf child: print "child", its PID, and the parent's PID. 

 

l Hints
-This is a single program, but becomes multiple processes
-The parent and the child need to do different things. 
-Use `if-else` on the return value of `fork()` to differentiate the behaviour.

105/19/25



ABCD: fork()

l How many processes will have been created by running 
this code (launching this program counts as 1)?

l What number will this code output?

(a)2

(b)3

(c)4

(d)7

(a)2

(b)3

(c)4

(d)7

b)a)

115/19/25



Bonus Activity

l Write a program that:
-Spawns 10 child processes.
-Each child finds 10 big prime numbers.
-Parent process waits 10s and exits.

lWhile waiting, parent prints "Still waiting..." each second

125/19/25



Replace current program in Process
exec()

135/19/25



Purpose of exec()

l When called, exec() will:
-..
from this process's memory
-..
-..

l exec() completely replaces the calling process; 
it is replaced by a new program.

Remove the currently running program

Load a new program into memory.
Start executing the new program.

145/19/25



ABCD: exec() Idea

l What words will the following pseudo-code program output?

 
l What happens to rest of a program after calling exec()?
-It won't get executed; it's replaced in memory.
-Analogy:
If a process is like a body, 
then exec() is a brain transplant.

(a) Hi
(b) Hi, Bye
(c) Hi, Bye, Bye,
(d) Hi, Bye, Hi, Bye,

int main()
{
   printf(“Hi\n”);
   fork();
   exec(....);
   printf(“Bye\n”);
}

155/19/25



man 3 exec

l Many different 
exec() flavours.

165/19/25



exec() Flavours
l exec() family has functions like:
-execl(...), execv(...)
execlp(...), execvp(...)
execle(...), execvpe(...)

l l / v  How to pass command line arguments:
-If it has an ‘l’, means pass each argument individually:
execl(“/bin/echo”, “/bin/echo”, “Yes!”, “No!”);
-If it has a ‘v’, means pass arguments together in array:
char* args[] = {“/bin/echo”, “hello”, “world”};
execv(“/bin/echo”, args);

l p Search path for the program
-With execlp() you can run “echo” and Linux will find it for you;
with execl() you need to tell Linux where to find echo.

l e Specify the environment variables as well
175/19/25



Subtlety on Arguments

l When a program is executed, 
OS hands it some command-line arguments.

-args[0] (‘arg0’) is.. 
-args[1] and beyond are the other arguments.

l exec() calls take:
-What program to execute
-What arguments to pass the new process

l When calling exec() functions, you specify the arguments
-We must make these arguments start with the program name:
..
-E.g., execl(“/bin/ls”, “/bin/ls”, “/home/”, “-l”, NULL);

the program’s name on disk.

We end up listing it twice.

185/19/25



Activity: exec()
l (15 mins) Write a program that...
1. Creates a child process. 
2. Parent: 
    call any one of `exec` functions that executes `ls -a`. 
3. Child:  
    call any `exec` function that executes `ls -a -l -h` 

l(same as `ls -alh` but spelled out, 
which is necessary for `exec` functions).

l  Discussion
-At end of our program, if we add: printf("%d\n", getpid())
-What will the parent print out?
-What will the child print out?

195/19/25



Summary

l Create a new process using fork()
-Clones current process.
-fork() returns twice:

lParent knows it’s the parent because 
return PID is non-zero ( = the child’s PID)
lChild knows it’s the child because 
return PID is zero

l Replace a running program with exec()
-Pass in what program you want loaded 
into the current process.
-Completely replaces the process’s memory space

205/19/25


