
Processes:
sleep()

Instructor: Linyi Li
Slides adapted from Dr. B. Fraser

Slides 2aCMPT 201 15/20/25

Topics

1) What specifically is a running program?
2) Writing C code to call a syscall: sleep()
3) Using man pages.
4) Fun with some C pointers.

25/20/25

Pair Programming

l In lecture, we'll do lots of programming
activities!

-You and a partner will use
..
-Show: Pair Programming
(by Code.org)

l Suggestion
-Driver typing the code
-Navigator look up the man page
-Both are creating the code!

l See ordinary pair programming session
(show 30s)

one computer to write code

35/20/25

https://youtu.be/vgkahOzFH2Q?si=c3SLrS9vjrzGS8Ub
https://youtu.be/PdKup_ybJro?si=DXz4qAMG9CHa03e8

Process

45/20/25

Process

l What is a program?
-Basically a..
-But unless you run it, it's just a file!

l What is a process?
-Basically a..
(not quite that simple; we'll learn more)

compiled executable file.

running program.

55/20/25

Program in Memory

CPU
Register

Cache

Main Memory
(RAM)

Solid State Drive

Hard drives

Bytes in Memory:
Fast CPU access

Memory Hierarchy

Hard Drive

Slow storage

l ..
l Program (the executable) stored on disk.
-Slow data access (fetch) speed due to distance,
spinning drive, etc.
-CPU cannot access bytes
without loading them into memory.
-So, a program must be in memory to run.

CPU

Data loaded into
main memory

CPU can execute instructions from memory.

65/20/25

Start Execution

Area for
instructions

Areas(s) for
data

(more later!)

...

Areas of
program’s

memory space

l To start executing a program, the OS will:
-..
in RAM for the program to run
-load the machine code from the program’s file
on disk into memory.
-make part of memory space for data
(variables, ...). More later!
-start executing the program from memory
(makes it a process!)

create a memory space

75/20/25

Controlling a Process

l Controlling a process
-Programmers use system calls (syscalls) to control processes.

l Some core process syscalls include:
-..
Create a new process by cloning current one.
-..
Replace current process with another executable.
(family of different calls, but do the same thing).
-..
Wait until a created process finishes its work.

fork()

exec()

wait()

85/20/25

ABCD: Process

l What is the difference between
a process and a program?
(a) A process is a program loaded into memory and running.
(b) A program is a process loaded into memory and running.
(c) A process is loaded from RAM to the hard drive by the OS.
(d) A program is loaded from RAM to the hard drive by the OS.

95/20/25

Coding &
Process Activity

105/20/25

Ready to Code
l Open Two Terminals (tabs or windows)
-A terminal for Coding:

lLaunch the CMPT 201 container:
docker start -ai cmpt201
lMake a folder for our work
mkdir -p ~/lecture/02-forkexecwait

-A terminal for 'man' page:
lconnect to the already running container:
docker exec -it cmpt201 zsh --login
lRun
man 3 printf

If not yet downloaded docker image, first run:
docker create -it --name cmpt201 ghcr.io/sfu-cmpt-201/base # if needed

115/20/25

Activity: Hello C World!

l Create a C program:
cd ~/lecture/02-forkexecwait/
nvim hello.c

l Compile
`clang hello.c`
-This builds executable a.out; run it:
./a.out
-Set executable’s name:
clang hello.c -o hello

l (3 mins)
You do it now!

125/20/25

Activity: sleep()

l (5 mins)
Write a program that keeps calling `sleep()` with some
timeout value.

-Check the man page for sleep():
$ man 3 sleep
(Without the 3, it will give you the Linux sleep command)

l In a 3rd terminal, run btop
-Connect to running container using `docker exec...`
-btop is a good tool to visualize parent/child processes

135/20/25

sleep() Solution

l See process information: btop
-Use tree view (press e)
-Each process has a parent
(except init and kthreadd; not
shown in containers).
-Our container’s zsh runs a.out

On Linux shows init In container, no init
145/20/25

ABCD: Docker

l Which command connects to
an already running Docker container?

l Which command downloads the Docker container?

l Which command launches the Docker container?

(a)docker start -ai cmpt201

(b)docker exec -it cmpt201 zsh --login

(c)docker git clone github.com/sfu-cmpt-201/base

(d)docker create -it --name cmpt201 ghcr.io/sfu-cmpt-201/base

Solutions:

155/20/25

Reading a
man page

165/20/25

Man Page
l Reading a man page
-our primary way to learn functions/system calls for systems
programming.
-It takes practice to effectively read a man page!

l The command is
man <da-thing>
-e.g., `man ls`, `man cd`

l Section Numbers
..

-Most relevant sections for CMPT 201:
-man 1: General commands e.g., `man 1 ls`
-man 2: System calls e.g., `man 2 fork`
-man 3: C standard library functions e.g., `man 3 printf`

Pick between two things of the same name.

175/20/25

Learning a Function
l Problem
-I know a syscall/function;
how do I use it?

l Steps
1)Is this what I want?
2)How do I call it?
3)What does it give me?
4)How can it go wrong?
(errno, feature test)

185/20/25

Learning a Function
1) Is this what I want?
-Read Description section
-..
(You'll need this skill!)

2) How do I call it?
-Read Synopsis (prototype)
-Check header files &
return type
-Check arguments
(in and out)

3) What does it give me?
-Read Return Value section
-Pay attention to output
parameters (pointers)!

Skim fast for relevant part

195/20/25

Learning a Function
4) How can it go wrong?

(errno, feature test)
-What errors possible?
Read Errors (more later)
-Do you need to a
feature test?
E.g., man 3 srand
must define _POSIX_C_SOURCE

205/20/25

ABCD: Review C Pointers

(a)-4 x 5 = -20

(b) 4 x 5 = 20

(c) 4 x 5 = -20

(d)-4 x 5 = 20

l What does this output?

(Formatting cleaned up)

215/20/25

Review C Pointers

l Note the: char** x
-x is a..

-Used for
output parameters

l Use of **
-Calling code passes in..

-Function sets where
that pointer points.

pointer-to-a-pointer.

address of
their pointer

225/20/25

Summary
l Processes are programs executing from memory (RAM)
-Each process has its own Memory Space

l C Programming
-Use man pages to lookup functions
-Pointers and pointers-to-pointers used as output parameters

l Development Ideas
-Use multiple terminal tabs/windows
-Code a little at a time

l sleep() puts function to sleep

235/20/25

