
A Tour of
Computer Systems

Slides 1CMPT 201 15/11/25

Instructor: Linyi Li
Slides adapted from Dr. B. Fraser

Topics

1) For a program to run, what is needed?
2) How does a computer’s hardware work?
3) What does the OS Kernel do?
4) How does a program interact with the OS?

25/11/25

Systems Programming

35/11/25

OS Stack

l Let's discuss the terminology necessary for the course
and generally for computer systems.

l OS Stack
-..

Applications

Kernel

Hardware

Syscall interface
(an API)

OS Stack

Layers of services, each building on lower layer

CMPT 201 deals extensively
with the syscall interface

45/11/25

Systems Programming

l Systems programming: ...

-Low-level languages (e.g., C, C++, Rust) give you the ability to do
systems programming, e.g., ..
(Python and Java don't allow you to do that)

l Higher-level programs
-Don't typically need a systems programming language, unless it
needs high performance.
-Choose a language that fits the target program's goals.

l Let's look at stack bottom up.

low-level programming that
directly interacts with hardware or the OS,
often using the syscall interface.

raw memory access.

55/11/25

Hardware Layer

Applications

Kernel

Hardware

OS Stack

65/11/25

Components in Computing

l 2 Fundamental Components in Computing:
-..
Handled by the CPU
-..
Handled by memory (main memory (RAM) and storage)

l E.g., a + b => c
-What is the computation?
-What is the data?

Computation:

Data:

75/11/25

PC Motherboard
l Von Neumann architecture
-Current fundamental model of computer design.
-Fetch data from memory to provide to the CPU.

l Hardware components:
CPU, memory,
and I/O devices.

85/11/25

Evolution of CPU: Moore’s Law

!"#"$"%F"G()*+",(-".*I%0(1%,"$F2%%"F,3(#2$(
45,5$"(6"F*%2728.(9"%"$I,:2%3G(-;<=(L:,*(
-2??"$@A2LBC(I%M(E".2%M0(F*G(6*"3:30(HIJO

Pre early 2000: frequency x 2 every 18 months
Post 2005: core count x 2 every 18 months

95/11/25

Evolution of Memory

l CPU needs data from memory
-CPU was getting faster,
so memory access had to get faster too.
-Speed of memory access limited by
..
-Memory is far away from CPU, and much too slow

CPU

RAM

memory chip speed, and speed of light!

105/11/25

CPU vs Memory Speed
l “Solve” speed gap between CPU and memory access
-.. very small memory inside a CPU;
hold data items from memory.
Very close to CPU, so very fast access to data

l Add cache
-Much larger in size than registers,
but much smaller than memory.
-Quite close (physical distance) to CPU,
so..
-Nowadays processors have many caches:
L1 cache ~512 KB (smallest, closest, fastest)
L2 cache ~8MB
L3 cache ~32MB (large, slowest)

Registers:

faster access times.

115/11/25

Multi-core Processor

l Desktop CPU today
-One processor chip
-Multiple Cores
-Shared & private caches

125/11/25

Memory Hierarchy

l We want the CPU to feel like it has access to..

-Intelligently bring data in from large-slow devices
(hard drives) into small-fast devices (memory, cache).

CPU
Register

Cache (L1, L2, L3)

Main Memory (RAM)

Solid State Drive

Hard drives

Tape

Fast!

Slow!

Small!

Big!

Ac
ce

ss
 S

pe
ed

Si
ze

a huge amount of (cheap) fast memory.

135/11/25

Memory Hierarchy
l Trade-offs
-..
Bigger size typically means more expensive
(size correlates with price).
-..
faster means closer to CPU.
-..
"Commit" means moving data from memory to disk;
i.e., changing state of data from temporary to permanent.

l e.g., `git commit`.
-..
SSD vs. HDD vs. tape: SSD's fastest but least reliable.
A tape is slowest but most reliable and lasts longer.

Cost

Distance & Access Speed

Persistence

Reliability

145/11/25

CPU Architectures

l Instruction Set Architectures (ISA)
-..
-Compiler translates C programs into machine instructions.
-E.g. ISAs: x86, ARM, RISK-V ("risk-five")

l 32-bit vs. 64-bit architectures
-For CMPT 201, we care most about
32-bit vs 64-bit because it..

Defines a set of instructions the CPU can perform.

determines the register size.

155/11/25

ABCD - Pointers

l What is a pointer in your C program?

l Which of the following is true about the following code?

 char* pLetter;
 long long* pCounter;

a) A memory address.
b) A variable storing a memory address.
c) The data stored in an array.
d) The address of the current instruction.

a) sizeof(pLetter) < sizeof(pCounter)
b) sizeof(pLetter) > sizeof(pCounter)
c) sizeof(pLetter) == sizeof(pCounter)
d) Depends on if the system is 32-bit or 64-bit

165/11/25

32 vs 64 bit Register Size Implications

l Big Computations:
In 32-bit, can do 64-bit computation in multiple operations.

l ..
(32-bit uses 32-bit pointers & 64-bit uses 64-bit pointers).

l ..

Pointer size controls the memory address space size
l Bus Width / Memory Channel Width

Pointer size affects # physical wires connecting to memory.
-With 64-bits:
need 64 wires to transfer address from CPU to memory.
need 64 wires to transfer data from memory back to CPU

0xF523 2352 9553 A354pLetter Data

Register size = pointer variable size

Address space size

175/11/25

Memory

l Memory made up of bytes (1 byte = 8 bits).
-..

l 32-bit vs 64-bit Word Size
-The number of bits stored in a CPU’s register.

l In a 32-bit system (32-bit word):
-Addresses are 32-bits:
0x0000 0000 to 0xFFFF FFFF
-(Data is retrieved from memory 32-bits at a time (4 bytes)
but memory addresses are still byte addresses)

9
Individual bytes

0x
00

00
 0

00
0

0x
FF

FF
 F

FF
F

... 0x
F1

00
 1

23
4

...pLetter

Each byte has an address

185/11/25

ABCD: Pointer Values

A
Individual bytes

0x
00

00
 0

00
0

0x
FF

FF
 F

FF
F

... 0x
F1

00
 1

23
4

...pLetter

l Which of the following is true?
 char ch = ‘A’;
 char* pLetter = &ch
a) pLetter == ‘A’
b) pLetter == 0x0000 000A
c) pLetter == 0xF100 1230
d) pLetter == 0xF100 1234

195/11/25

ABCD - Memory

l Which of the following is true?

l If memory (RAM) stored just 16 bytes (16 locations),

how many bits do we need in our address?

a) 1,000 = MB, 1,000,000 = KB, 1,000,000,000 = GB
b) 1,000 = GB, 1,000,000 = MB, 1,000,000,000 = KB
c) 1,000 = KB, 1,000,000 = MB, 1,000,000,000 = GB
d) 1,000 = GB, 1,000,000 = KB, 1,000,000,000 = MB

a) 2-bits
b) 4-bits
c) 8-bits
d) 16-bits

B < KB < MB < GB < TB

205/11/25

Why 64-bits?

l Why are most computers 64-bit architectures now?
-Has a 64-bit register
-Has a 64-bit pointer
-Allows us to..
264= 16,000,000,000 GB = 16 Exabytes (VERY large)

l In a 32-bit architecture, how much memory can the CPU
access?
a) 65,526 bytes
b) 2,147,483,648 bytes
c) 4,294,967,296 bytes
d) 18,446,744,073,709,551,616 bytes

Answer:

address 264 different bytes in memory.

215/11/25

Kernel Layer

Applications

Kernel

Hardware

OS Stack

225/11/25

What is the OS?

l Operating System (OS)
..

l OS Includes:
-..
Main part that actively manages resources.
-Supporting tools:
such as GUI, command line;
These are what differentiates Linux distributions (“distros”)

Central software managing the computer's resources.

Kernel:

235/11/25

What does a Kernel do?

l Kernel’s Role
-..

lmany programs want to access the hardware at the same time
lkernel manages (mediates) access

-..
the kernel controls programs (running, stopping, etc.).
-..
the kernel provides protection (isolation) for users and programs.

lE.g., users can’t access each other’s data
lE.g., programs can’t interfere with each other’s execution.

Resource management

Program control

Protection

245/11/25

Event-Driven

l When does a kernel do some work?
-Generally, the OS lets other programs run and waits for something it
needs to do.
-The kernels is..
It responds to events.

l Events can be:
-..
a hardware event like a mouse click, or network packet received
-..
a user-space-application generated call to the kernel
e.g., application asking kernel to printf() to the screen.
-..
a software interrupt that announces an event to a process
e.g., SIGINT = ctrl+c, SIGSEGV = segmentation (page) fault

event driven:

Hardware interrupts

Syscalls

Signals

255/11/25

User Mode vs. Kernel Mode

l Privilege mode of CPU execution
-Kernel Mode runs the OS kernel;
allows full privilege and full access to the hardware.
Often called "Ring 0"
-User Mode runs applications;
..
E.g., instructions that allow direct access to hardware
E.g., access to certain regions of memory (kernel memory)

l Modern CPUs run in one of those two modes at a given moment.
l ABCD: Which best explains why we

need a user mode?
(a) Isolation
(b) Efficiency
(c) Null pointers
(d) Abstraction

cannot execute "privileged instructions":

265/11/25

Root user (aside)

l User / Kernel Mode vs Root User
-The “mode” (privilege level of code) is different than the user-level
-The root user is still a user, but with full admin privileges

lRoot can run programs and access files that normal users cannot.
lRoot user often called a super user.

-Root user cannot access kernel memory or protected instructions.

275/11/25

https://makelinux.github.io/kernel/map/ 285/11/25

Important Terms in the Kernel

l System
-.. : every device needs a device driver to control it.
E.g., network card device driver talks to hardware to send/receive data
to/from the physical network.

l Processing
-Processes, threads, synchronization, and scheduling

l Memory
-Virtual memory, physical memory, and paging

Covered
later

Covered
later

Device drivers

295/11/25

Important Terms in the Kernel (cont)

l Storage
-File systems, and VFS (Virtual File System).

VFS is an interface:
..
e.g., read and write.
-By looking like a normal file, many tools can seamlessly work with it
e.g., `cat /proc/cpuinfo`

l Networking
-Sockets, TCP, UDP, and IP

Covered
later

data structures and operations that a file system should support

305/11/25

ABCD - Kernel

l Which of the following is true?

(a)The root user runs programs in kernel mode.
(b)Syscalls allow the kernel to execute user-level applications.
(c) A hardware interrupt is generated when dereferencing a null

pointer.
(d)User mode prevents applications from executing privileged

instructions.

315/11/25

Applications Layer

Applications

Kernel

Hardware

OS Stack

325/11/25

Lifetime of a Program

Where do
applications
come from?

Executable
(machine code)

Running Program

Source Code

Compilation

Memory Loading

(briefly)

335/11/25

Compilation vs. Interpretation

l Two major ways to run a program:
-Compilation (e.g., C, C++)
-Interpretation (e.g., Python, Bash)

l Performance vs Portability Trade-off
-Compilation has better performance:
it directly generates machine code to execute.
-..
machine code for one specific ISA
E.g., can't run x86 executable on ARM machine
-Interpretation is slower, but same script can run anywhere there is
an interpreter.

(briefly)

Compilation not portable:

345/11/25

Intermediate Representation [skip]

l Intermediate Representation (IR)
-Java bytecode, LLVM bitcode: architecture-neutral ISAs.
low-level instructions similar to x86 or ARM instructions but
they do not target specific CPUs.

l Steps to using IR
l 1. Compile source code to low-level IR instructions
l 2. Use a backend compiler to compile IR down to an

architecture-specific executable
l Rust and Go compilers generate portable LLVM bitcode

(in IR), and then use LLVM backend compiler to
generate machine code for specific ISA

(briefly)

355/11/25

POSIX

l POSIX = ..
-A standard for (user-level) software portability across different OSs.
-Includes programming interface (file I/O, C standard library, etc.)
and shell utilities
-We see it in C to: specifies what features we need:
#define _POSIX_C_SOURCE 200809L

Image: https://www.linkedin.com/pulse/understanding-posix-standard-
bridges-operating-systems-logzeta-1bl4f/

(briefly)

Portable Operating System Interface

365/11/25

ABI

l ABI = ..
l Similar to API = ..
-An API is at the code level:
Your code calls or accesses the functions of the API, such as
provided by a library.
-An ABI is an interface for a binary (an executable) that an OS
defines.

l Compilers generate executables that follow the ABI for the OS
-E.g., Windows ABI is different from Linux ABI.
Cannot copy a Windows binary (`.exe`) to a Linux machine and run it
(and vice versa).

Application Binary Interface
Application Programming Interface

375/11/25

Virtualization

395/11/25

Virtualization of Traditional OS Stack

l Virtualization allows..

-Lets us be much more flexible!
-Software can control the environment:
”Spin up 3 virtual machines to host new databases”

l ..
software that provides virtualization.

-Also called the Virtual Machine Monitor (VMM)
-Hypervisor can run at different levels of our OS stack, giving
different levels of flexibility

part(s) of our OS stack to be swapped out

Hypervisor:

405/11/25

On Hardware

l VMM Directly atop Hardware
-VMM..
-This is often used in a data center environment.

Hardware
VMM

Kernel
Apps

VM #1 VM #2 VM #3

Kernel
Apps

Kernel
Apps

emulates hardware for each VM (Virtual Machine).

415/11/25

On Kernel

l VMM atop the Kernel
-A VMM is an application running atop a kernel, along with other
applications.
-The VMM creates/runs/manages VMs.
-This is often used in a desktop environment,
e.g., VMWare Workstation, VirtualBox, QEMU.

Hardware

VMM
Kernel
Apps

VM #1 VM #2

Kernel
Apps

Kernel
Apps

425/11/25

Containerization

l Containerization
-Containerization creates a container not a virtual machine.
-Container includes..
-Uses the same OS kernel as rest of the system
-Uses Linux features for isolation: process isolation (namespaces), resource
control/isolation (cgroups), etc.
-This is the most popular form of virtualization these days, e.g., Docker, Podman.

Hardware

Containerizater
Apps

Container #1 Container #2
VM #3Apps

Kernel
Apps

an isolated set of applications and data.

435/11/25

ABCD - Virtualization

l Which of the following is a major benefit of virtualization?
(a) Allows user level applications to call the kernel.
(b) Allows parts of the OS stack to be swapped out under software

control.
(c) Allows the kernel to control different pieces of hardware when

they are connected at runtime.
(d) Allows application to run without using an OS kernel.

445/11/25

Summary
l OS Stack is the layers of service
-Hardware, Kernel, Application.

l Memory hierarchy
-allows programs to access large memories quickly

l Pointers hold addresses,
-32 vs 64 bits limit how much memory we can access

l Kernel mode gives OS kernel access to all resources
-User mode limits what an application can do.

l Applications use the OS’s ABI to use services
l Virtualization allows parts of the OS stack to be swapped out

under software control.

465/11/25

