E

Memory Management

25-02-02 CMPT 201 Slides 5 © Dr. B. Fraser |

Topics

1) What is the layout of memory?

2) How does the heap work?
a) Getting space from the OS

b) Tracking free space
c) Freeing allocated space

25-02-02 2

Context

 Memory allocation / deallocation
- Heap is used for dynamically allocated memory.

* Usually use: malloc() or calloc(), and free().
- How could we actually implement malloc() / free()?

(This will help us really understand low-level memory
management)

 We are not talking about physical memory here.
User processes can only use virtual memory, not physical memory.

25-02-02 3

~ Details

e Can find more info iIn OSTEP book

(more depth than we require)
— Chapter 13 The Abstraction: Address Spaces
https://pages.cs.wisc.edu/~remzi/OSTEP/vm-intro.pdf

— Chapter 14 Interlude: Memory API
https://pages.cs.wisc.edu/~remzi/OSTEP/vm-api.pdf

- Chapter 15 Free-Space Management
https://pages.cs.wisc.edu/~remzi/OSTEP/vm-freespace.pdf

25-02-02 4

Prerequisites

25-02-02 5

What you already know

* This lecture assumes you know:
- Data structures used for memory management:
array, struct, linked lists

— Able to use and understand malloc() and free() in C.

- How to implement a singly- and doubly-linked list in C.

- The stack and the heap:
 How a program's variables use stack and heap in C
* How variables are placed in the stack and heap.

25-02-02 6

Linked Lists

struct Node { int main() {
int data; struct Node *head = NULL;
struct Node *next;
}; // Append elements to the list
append(&head, 1);
// Create a new node with the given data append(&head, 2);
struct Node *createNode(int data) { append(&head, 3);
struct Node *newNode
= malloc(sizeof(*newNode)); // Traverse and print the list
newNode->data = data; printf("Linked List: ");
newNode->next = NULL; traverse(head);
return newNode;
} // Remember: free memory when done

struct Node *current = head;
while (current != NULL) {

// Insert a new node at the end of list struct Node *temp = current;
void append(struct Node **head, int data) { current = current->next;

// Code together! free(temp);
b }

head = NULL;
// Traverse and print the linked list
void traverse(struct Node *head) { return O;
// Code together! }
b

25-02-02 single-linked-class.c 7

Memory Layout

Addresses

Read only “’;>

Kernel Address Space
(mapped into process’s
virtual memory)

Stack
(grows |)

Libraries:

Memory Mapping

libc, libpthread.. H”;‘> (grows |)

Heap

(grows 1)
“Block Starting BSS

Symbol” (uninitialized)

Data

(initialized)
Code H”;.> Text

OxFFFF FFFF FFFF FFFF = (2" - 1)

=

Local variables,
stack frame

——————

Unallocated
space

Our Focus Today!
malloc() to dynamically
allocate variables.

—
—
=

Global & static
data

25-02-02

0x0000 0000 0000 0000

brk() and sbrk()

25-02-02 10

Getting More Memory

Kernel Address

* Program Break Space
o Stack
(actually end of BSS; but grows to be heap) (grows 1)
- Above the Program Break is unallocated space.
M Mappi
* More Space emory Mapping

— Linux uses brk() and sbreak() to move the
program break. Heap
(grows 1)

BSS
(uninitialized)
Data
(initialized)
Text

25-02-02 .

man sbrk

* man sbrk
- OS increases size heap.

- It's a syscall: overhead!

* Don’t call sbrk() often
- malloc() (user-level)
calls sbrk() (kernel) to..

- malloc()..

 How can malloc() do that?
- Allocation strategies!

- Deallocation strategies!

’ 25-02-02

ABCD: Memory Layout

 What is the name of each
memory segment?
a) BSS Q1 > (gro.\;\;s 1)
b) Heap
c) Program Break Memory Mapping
d) Stack (grows 1
Q2
Q3 (grows 1)
(uninitialized)
Data
(initialized)
Text
25-02-02 13

S

Managing Dynamic Memory
Overview

25-02-02 14

Memory Allocator

Heap
 Memory Allocator: manages the heap
- For each allocation request, Used
Freed
— It tracks of which parts of the heap are
not used. Used
* Fragmentation
— Over time the application allocates and Freed
frees memory regions.
— This fragments memory into Freed
Used
Freed

25-02-02 15

Track Free Space

Heap
_>

* Track free regions (blocks) In

' _ Used
- We don't track used regions;

we are given back regions > Freed
from calls to free(). <

Used

<:f;> Freed

Freed

<i:jfr Used

Freed

25-02-02 16

Linked List Management

Free block

-

Free

Free

Another
allocate

Free

Used

Head

25-02-02

Used

~____ Head

Used

~__Head

Free

Used

Freed

-

~____ Head

External Fragmentation
Repeated allocate/free can
fragment free space.

Free
-

Used

Freed

Used

Free

Freed

Freed

2)

Used

~_ Head

Head

Linked List Management

* Free Blocks Linked List
- We have a linked list of free blocks.

* Basics of Allocation - malloc()

- Remove it from the linked list.

- Split the free block into two blocks: allocated and free.

- Insert the new free block back into the head of the linked list.
- Return the allocated block to the caller.

e Basics of Deallocation - free()
- Inserting the given block at head of the linked list.

’ 25-02-02 18

Linked-list Without Dynamic Allocation

* Linked List of Free Memory

- We've see how to manage free memory using a linked list of
free blocks.

- But, how do we normally create nodes in a Linked List?

- So, how do we create a linked list without dynamic allocation?
* In-Place linked List

to track size of the block and pointer to next free block

- Perform coalescing:

combines consecutive free blocks into a larger single free
block.

25-02-02 19

In-Place Linked List

Heap - Address
255 (0-2595)

 Example with the
heap size of 256 bytes.

e Build linked-list of blocks.

 Each free and allocated
block has a header

. F
« Assume size and next ee

are 8 bytes each.

Header
16 bytes Address of
next node

25-02-02 0 20

Example: In-Place Linked List

Initial State

Free

next = null
size = 256

255

Allocate
100 bytes

Free

next = null
size = 140

Allocated
(100 bytes)

next = null
size = 116

255

116

Allocate
50 bytes

Free

next = null
size =74

Allocated
(50 bytes)

next = null
size = 66

Allocated
(100 bytes)

next = null
size = 116

255

182

116

Free
100 bytes

Free

next = null
size =74

Allocated
(50 bytes)

next = null
size = 66

Free

next = 182
size = 116

255

182

116 — size = 66

Free
50 bytes

Free

next = null
size =74

Free

next=0

Free

next = 182
size = 116

255

182

116

ABCD: Linked List

 \What was the order in which these blocks
were freed?
(Listed in order of first freed to last freed)

a) Athen B then C
b) Athen C then B
c) B then C then A
d) C then B then A

25-02-02

next=0
size =74

B

next = null
size = 66

next = 116
size = 116

255

182

116

22

External Fragmentation

« External Fragmentation

— But each allocation request can only be satisfied by a single
block (cannot split it up).

- Even If total free memory is enough, may not have

* Coalescing
- Process of combining consecutive free blocks into bigger
blocks.

* Internal Fragmentation
— Similar problem of unused space inside blocks; More during
virtual memory.

25-02-02 23

Coalescing

* Merge consecutive
free blocks.

25-02-02

Free

next = null
size =74

Free

next=0

—> size = 66

Free

next = 182
size = 116

After
Coalescing

Free

next=0
size = 255

24

Finding a
Free Block

25-02-02 25

Allocating Memory

* Allocating Memory Traverse
e.g., malloc() linked list of
free block
Requires finding a big \}
enough memory block to
: Find
satisfy the request. Big E";ough
Block

Allocated Block Split block into Extra space
Requested size 2 blocks (new free block)
(returned to caller)

Link new free
space block as
head

25-02-02 26

Allocating Memory: First Fit

e First-fit
Traverse
list
* Advantage
- Implementation simplicity Y}
- fast: it only needs to find _ Find
the first big enough block. First Block
 Disadvantage :&
— can pollute the beginning Allocated Soit -
of the free list with small Block <; b|§0'k %} sp);gae

blocks -
\/

- |leads to more search time
. . New
for bigger allocation head
reguests. —

25-02-02 27

Allocating Memory: Best Fit

e Best-fit
- Find the smallest free block that
IS big enough.

Traverse
list

e Advantage

o

* Disadvantage Find
- Speed Best Block
must search the entire list i&
(unless ordered by size which

has additional implementation Allocated <; Split %> Extra

Comp|exity)_ Block block space
- Fragmentation V.

may create many small free New

blocks, leading to more chances head

of external fragmentation. —

25-02-02 28

Allocating Memory: First Fit

e Worst-fit

- Find the largest free block.

 Advantage

* Disadvantage

- must search the entire list.

Traverse
list

2

Find
Worst
Block

7

Allocated
Block

Split
block

Extra
space

Vi

New
head

————

25-02-02

29

ABCD: Free Space

* A memory allocation system is asked to
allocate 64 bytes. Which block is allocated

if it is using...

 Worst Fit

25-02-02

First fit

Best Fit

a)A
b) B
c)C
d) None of them.

next=0
size =74

B

next = null
size = 66

next = 116
size = 116

255

182

116

30

Summary

* Memory Segments
- text, data, BSS, heap, memory mapped, stack, kernel.

- Program break and effect of brk() and sbrk()

Memory Allocator
- Linked list of free memory

- New free blocks go first in the list

* Fragmentation
- External Fragmentation

- Coalescing algorithm

e Block selection algorithms
- (first, smallest, biggest) fit

’ 25-02-02 31

