
26-02-08 1

Threads

Adapted by Joseph Lunderville
from slides by Dr. Brian Fraser

and course material by Dr. Steve Ko

26-02-08 2

Topics
● How do “threads of execution” differ from processes?

– How do two threads share memory space?
● How do we start and work with threads?

26-02-08 3

What is a Thread?
● A thread is a unit of execution

– Like a process, in terms of scheduling...
– But lighter weight, from the kernel’s perspective:

everything else shared within a process
– Sometimes called a “lightweight process”

● Main thread
– A process always has at least one thread, called a

main thread: this is where main() is initially called

26-02-08 4

Details
● Can find more info in OSTEP book (more depth than

we require)
– Chapter 26 Concurrency: An Introduction

https://pages.cs.wisc.edu/~remzi/OSTEP/threads-intro.pdf
– Chapter 27 Interlude: Thread API

https://pages.cs.wisc.edu/~remzi/OSTEP/threads-api.pdf

https://pages.cs.wisc.edu/~remzi/OSTEP/threads-intro.pdf
https://pages.cs.wisc.edu/~remzi/OSTEP/threads-api.pdf

5 26-02-08

Threads vs. Processes

26-02-08 6

Thread vs Process
● If threads and processes both execute

concurrently, how are they different?
– Processes have independent access to kernel

resources
– Most obviously: separate (virtual) address spaces
– fork() creates a child process with its own address

space
– Threads share the same address space, and data

changed by other threads is immediately visible
● Each thread gets its own execution state

– Stack, registers: local variables
– Program counter: which function
– Special “thread-local” data, e.g. errno Text

Data
BSS

Heap

Kernel

Memory
Mapping

Thread 2’s
Stack

Process A’s
address space

Main
Thread’s

Stack

26-02-08 7

Threads and Processes - Tradeoffs
● Benefit of a thread

– Threads in a process share the same address space,
data sharing is convenient and usually fast

● Any thread can read from or write to a global
variable

● Pointers point to the same code and data
structures, and are valid to share

– Usually faster to create (lighter weight)
● Benefit of a process

– Memory isolation (just one, but it’s big)

8 26-02-08

POSIX Threads

26-02-08 9

man pthreads

● man pthreads
– Description (what’s shared and what’s not!)
– Return values (and errno)
– Thread IDs
– Thread-safe functions

26-02-08 10

Common Functions
● pthread_create() (read along on man page)

– pthread_t: this is the type used for thread IDs
– Function pointer to a thread function

● Unlike with fork(), we specify which function to execute
– void * arg, passed in and returned

● void * can be cast to any pointer type (or intptr_t in a pinch!)
● Use a struct to pass multiple arguments

– pthread_attr_t specifies various attributes of the new thread
● pthread_exit()

– Terminates the calling thread
– Happens implicitly if thread function returns

return NULL; // Leaving thread function!

26-02-08 11

Common Functions
● pthread_self()

– Returns the caller's thread id
– Hint: use gettid() to be able to print Linux thread ID as a

number
● pthread_join()

– Waits until that thread terminates
– Receive thread return value via void * * retval

● pthread_detach()
– Lets the calling thread just run (why don’t we have the

zombie problem?)
– Can use this when return value not used

26-02-08 12

Audience Participation - pthreads
● Each thread gets its own...

a) Stack
b) Heap
c) Text (Code segment)
d) stdout

26-02-08 13

Audience Participation - pthread_create()

● Which of the following is true about
pthread_create()?

a) It creates a new process running the provided thread start
function.

b) It passes nothing to the function (void).
c) It waits until the spawned thread finishes.
d) It stores the thread_id for later user.

26-02-08 14

Activity - pthreads
● Write a program that creates a thread (15m)

– Main thread
● create another thread
● wait until thread terminates
● print out the return value

– New thread
● accept a string as its argument
● print out the argument and its own ID (use gettid())
● return the length of the received string

– Compile with -pthread compiler option
● i.e., clang -pthread example.c

Start simple!
Make a thread
and print “hi”!

main() can get the number:
 void* ret_val = 0;
 pthread_join(...);
 printf(“%ul”, (uint64_t) ret_val);

Thread function can return a number:
 return (void*) 42;

15 26-02-08

Data Race

26-02-08 16

Data Race Activity
● Write a program (10m)

– Declare a global variable
int count = 0;

– Create two threads (besides the main thread)
● Each new thread adds 1 to count, 10 million

times
– Main thread pthread_join()’s the two threads
– Print count

● Run multiple times, observe output
– Extra credit: compare compiling with -O0 and -O2

26-02-08 17

Determinism
● Deterministic behaviour

– Program output is the same every time, given the same input
– Nice! Makes testing and debugging easier

● Races
– Order of code execution between multiple threads and processes is not

always the same
● This is just one source of non-determinism! Determinism and

repeatability can be subtle
– When timing variation leads to visible non-determinism, that’s a race

condition
– Term usually connotes a bug
– Sometimes non-determinism is designed in, e.g. real-time and

distributed systems – algorithm design is important here!

26-02-08 18

Data Race Problem
● Consider the statement, ++count

– It seems like ++count is one operation
– In reality,

int tmpRegister = counter; // Load from memory
tmpRegister++; // Change value
counter = tmpRegister; // Store value to memory

– What happen if this runs on 2 threads? (assume counter = 5)
Thread 1 Thread 2

int tmp1 = counter

tmp1++

counter = tmp1

int tmp2 = counter

tmp2++

counter = tmp2

= 6

= 7

Thread 1 Thread 2

int tmp1 = counter

int tmp2 = counter

tmp1++

tmp2++

counter = tmp1

counter = tmp2= 6
= 6

26-02-08 19

Race Condition
● Data race:

– This is called the data race problem
– Different threads race to update data and overwrite each other's result
– Often indicates a bug, but “data race” is a descriptive term: can be benign

● Race condition:
– The correctness of a program depends on the timing and/or order of

operations
– More general in that it does not identify a mechanism, but more specific in

that it identifies a problem
● More about the distinction

– Interesting and important if you are doing threaded or distributed
programming at systems level, but beyond course scope for now
https://blog.regehr.org/archives/490

https://blog.regehr.org/archives/490

26-02-08 20

Summary
● Threads

– Lightweight processes that share a memory space
– Always have main thread

● pthreads
– POSIX library/API for threads
– pthread_create(), pthread_join(), ...

● Data Race
– When two threads may access the same data at the

same time

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

