Threads

Adapted by Joseph Lunderville
from slides by Dr. Brian Fraser
and course material by Dr. Steve Ko

26-02-08 1

* How do “threads of execution” differ from processes?
- How do two threads share memory space?

* How do we start and work with threads?

26-02-08 2

What is a Thread?

* Athread is a unit of execution
- Like a process, in terms of scheduling...

- But lighter weight, from the kernel's perspective:
everything else shared within a process

- Sometimes called a “lightweight process”

* Main thread
- A process always has at least one thread, called a
main thread: this is where main() is initially called

26-02-08 3

* Can find more info in OSTEP book (more depth than
we require)
- Chapter 26 Concurrency: An Introduction
https://pages.cs.wisc.edu/~remzi/OSTEP/threads-intro.pdf

- Chapter 27 Interlude: Thread API
https://pages.cs.wisc.edu/~remzi/OSTEP/threads-api.pdf

26-02-08 4

https://pages.cs.wisc.edu/~remzi/OSTEP/threads-intro.pdf
https://pages.cs.wisc.edu/~remzi/OSTEP/threads-api.pdf

Threads vs. Processes

26-02-08 5

Thread vs Process

Process As
address space

* If threads and processes both execute
Kernel
concurrently, how are they different? o
Processes have independent access to kernel o
read’s
resources Stack
~ Most obviously: separate (virtual) address spaces
— fork() creates a child process with its own address Thread 2's
space Stack
~ Threads share the same address space, and data Memory
changed by other threads is immediately visible Mapping
* Each thread gets its own execution state
~ Stack, registers: local variables Heap
~ Program counter: which function BSS
: Dat
~ Special “thread-local” data, e.g. errno szi

26-02-08 6

Threads and Processes - Tradeoffs

* Benefit of a thread
- Threads in a process share the same address space,
data sharing is convenient and usually fast

* Any thread can read from or write to a global
variable

* Pointers point to the same code and data
structures, and are valid to share

- Usually faster to create (lighter weight)

* Benefit of a process
- Memory isolation (just one, but it's big)

26-02-08 7

POSIX Threads

26-02-08 8

 man pthreads
- Description (what's shared and what's not!)

- Return values (and errno)
- Thread IDs

- Thread-safe functions

pthreads(7) Miscellaneous pthreads(7)

pthreads — POSIX threads

26-02-08)

Common Functions

 pthread create() (read along on man page)
- pthread_t: thisis the type used for thread IDs
— Function pointer to a thread function
* Unlike with fork(), we specify which function to execute
- void * arg, passedin and returned
* void * can be cast to any pointer type (or intptr_t in a pinch!)
* Use a struct to pass multiple arguments

- pthread_attr_t specifies various attributes of the new thread

» pthread exit()
- Terminates the calling thread

- Happens implicitly if thread function returns

return NULL; // Leaving thread function!

26-02-08

Common Functions

« pthread_self()
- Returns the caller's thread id

- Hint: use gettid() to be able to print Linux thread ID as a
number

« pthread_join()
- Waits until that thread terminates

- Receive thread return value via void * * retval

« pthread_detach()
- Lets the calling thread just run (why don’t we have the
zombie problem?)

— Can use this when return value not used

26-02-08

Audience Participation - pthreads

* Each thread gets its own...

a) Stack

b) Heap

c) Text (Code segment)
d) stdout

26-02-08

Audience Participation - pthread_create()

* Which of the following is true about
pthread_create()?

a) It creates a new process running the provided thread start
function.

b) It passes nothing to the function (void).
) It waits until the spawned thread finishes.

d) It stores the thread_id for later user.

26-02-08

Activity - pthreads

* Write a program that creates a thread (15m) Start simple!
- Main thread Make a thread
« create another thread and print “hi"!

* wait until thread terminates
* print out the return value
- New thread
* accept a string as its argument
* print out the argument and its own ID (use gettid())
* return the length of the received string
- Compile with -pthread compiler option

* i.e,clang -pthread example.c

Thread function can return a number: | main() can get the number:
return (void*) 42; * ret_val = 0;
pthread_join(...);

printf(“%ul”, (uint64_t) ret_val);

26-02-08

Data Race

26-02-08

Data Race Activity

* Write a program (10m)
~ Declare a global variable
int count = 0;
~ Create two threads (besides the main thread)

* Each new thread adds 1 to count, 10 million
times

~ Main thread pthread_join()’s the two threads
~ Print count

* Run multiple times, observe output
~ Extra credit: compare compiling with -00 and -02

26-02-08

Determinism

Deterministic behaviour
~ Program output is the same every time, given the same input

~ Nice! Makes testing and debugging easier

* Races

~ Order of code execution between multiple threads and processes is not
always the same

* This is just one source of non-determinism! Determinism and
repeatability can be subtle

When timing variation leads to visible non-determinism, that's a race
condition

Term usually connotes a bug

Sometimes non-determinism is designed in, e.g. real-time and
distributed systems - algorithm design is important here!

26-02-08

Data Race Problem

* (Consider the statement, ++count

It seems like ++count is one operation
In reality,

int tmpRegister =
tmpRegister++;
counter = tmpRegister;

counter; // Load from memory
// Change value
// Store value to memory

What happen if this runs on 2 threads? (assume counter = 5)

int tmpl = counter

int tmpl = counter

tmpl++

int tmp2 = counter

counter = tmp1l

=7

26-02-08

int tmp2 = counter

tmp2++

tmpl++

tmp2++

counter = tmp1l

ounter = tmp2

counter = tmp2

-6

=6

Race Condition

* Data race:
~— This is called the data race problem

Different threads race to update data and overwrite each other's result
Often indicates a bug, but “data race” is a descriptive term: can be benign

* Race condition:

~ The correctness of a program depends on the timing and/or order of
operations

~ More general in that it does not identify a mechanism, but more specific in
that it identifies a problem

* More about the distinction
~ Interesting and important if you are doing threaded or distributed
programming at systems level, but beyond course scope for now

https://blog.regehr.org/archives/490

26-02-08

https://blog.regehr.org/archives/490

* Threads
- Lightweight processes that share a memory space

- Always have main thread

* pthreads
- POSIX library/API for threads

- pthread_create(), pthread_join(), ...

* Data Race
- When two threads may access the same data at the
same time

26-02-08

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

