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Virtual Memory

Adapted by Joseph Lunderville
from slides by Dr. Brian Fraser

and course material by Dr. Steve Ko
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Topics

1)How can each process have its own address space?
2)How can the OS allocate memory to processes?
3)What if we run out of memory?
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Context:
What problem are we solving?
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Details
● Virtual memory is one of the most important OS concepts.

– It is also a good example that shows the power of abstraction.
● Can find more info in OSTEP book (more depth than we require)

– Chapter 13 The Abstraction: Address Spaces
https://pages.cs.wisc.edu/~remzi/OSTEP/vm-intro.pdf

– Chapter 15 Mechanism: Address Translation
https://pages.cs.wisc.edu/~remzi/OSTEP/vm-mechanism.pdf

– Chapter 18 Paging: Introduction
https://pages.cs.wisc.edu/~remzi/OSTEP/vm-paging.pdf

– Chapter 16 Segmentation
https://pages.cs.wisc.edu/~remzi/OSTEP/vm-segmentation.pdf

https://pages.cs.wisc.edu/~remzi/OSTEP/vm-intro.pdf
https://pages.cs.wisc.edu/~remzi/OSTEP/vm-intro.pdf
https://pages.cs.wisc.edu/~remzi/OSTEP/vm-intro.pdf
https://pages.cs.wisc.edu/~remzi/OSTEP/vm-intro.pdf


26-02-08  5

Memory Layout in the Early Days
● One address space

– Could run only a single program
– One user at a time: either run batch 

jobs, or get poor utilization
● Memory divided into two parts

– OS and program
● Computers are very, very expensive... 

can we share interactive access?

Memory

OS

Program
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Early Memory Sharing
● Memory divided into regions

– Could run multiple processes
– Fixed allocations (wasteful!)

● Segments, overlays
– Allow relocation, more efficient sharing

● Problems
– Not granular, regions/segments/overlays are big
– Extra complexity for programmers to manage 

overlays manually (overhead if automated)
– No implicit protection, a “bad” pointer in one process 

could access another process's memory

Memory

OS

Process A

Process C

Process D

Free
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Understanding Memory
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Address-Based Memory Operations
● Variables are a convenience for programmers

– The computer really operates on memory
– Instructions are defined by changes to 

memory
● Random Access Memory (RAM)

– All addresses are equally fast to access
● Probabilistically true! Used to be 

literal
● Handwave effects of cache, NUMA

– Contrast e.g. tape, with sequential access

int i = 0;
int *ptr = &i;
int y = i + 2;

int y 

int *ptr 

int i 0

0x3672 
052A...

2

Code:

Memory
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Locality
● Programs tend to access a small portion of their memory much more 

frequently
● Code

– Executes sequentially, but...
– Loops jump back and cause a sequence to repeat
– Branches skip a portion of the sequence (and often the same one)
– Same function may be called many times

● Data
– Small parts of a larger data structure accessed more often, e.g.

● Index in a database accessed before every data access
● In a game, the part of the map the player is in right now

– At a small scale, e.g. in a loop iterating over an array,
● Local variables in the loop are accessed repeatedly
● The array is accessed sequentially
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Locality
● Temporal Locality:

– Recently accessed memory is likely to be accessed again (code 
and variables used in a loop)

● Caches directly help
● Spatial Locality:

– Data near to recently accessed memory is likely to be accessed 
next

– More sophisticated CPUs with caches usually extend this 
concept

● Cache lines often include adjacent data
● Branch prediction, strided prefetch
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Understanding Memory Solutions
● Fundamental properties of memory use

– Programs really work on memory.
– Programs access the same data over and over again 

(temporal locality)
– Programs access data near to previously accessed 

data (spatial locality)
● Can these properties help us design a memory 

sharing abstraction?
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Audience Participation - Locality
● Assume a program has just  accessed memory locations 6 

and 12
– Spatial locality suggests we might soon access...

– Temporal locality suggests we might soon access...

 

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

a) 0, 3, 9
b) 6, 12
c) 5, 7, 11, 13
d) 4, 8, 10, 14

a) 0, 3, 9
b) 6, 12
c) 5, 7, 11, 13
d) 4, 8, 10, 14
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Solution:
Virtual Memory
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Memory Abstraction
"All problems in computer science can be solved by another level of 
indirection, except for the problem of too many levels of indirection."
-- David Wheeler

● Virtual memory is a mechanism to enable
– physical memory sharing for multiple processes
– isolation of each process's memory access

● A process uses virtual memory instead of physical memory
● Virtual memory consists of

– Virtual address space and address translation
– Virtual memory is a good example that demonstrates the power of 

abstractions
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Virtual Address Space
● All memory discussed so far has been virtual memory!

– Virtual address space size is determined by the 
pointer size: 0 to (e.g.) 264 - 1

– Virtual memory is a memory abstraction 
(imaginary space) that the program & 
programmer operates in

– The OS and hardware build us this imaginary 
space

● Virtual vs physical
– User-level processes works with virtual addresses
– Kernel-level components can deal with both 

virtual and physical addresses
Text

Data 

BSS 

Heap

Kernel
Space

Memory
Mapping

Stack

Virtual
Address
Space

0

0xFFF..F

Physical
Memory

Not to 
scale!
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Room Analogy
● Imagine a process as a room

– Its virtual memory space 
is the surface of the walls

– There are no real walls, 
they are an illusion

– Wall panels are moved 
into place as needed to 
make the room
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Room Analogy (cont’d)
● Imagine a process as a room

– Virtual memory space is the walls: pointers can point to 
the wall, can read/write on wall

– Walls have (e.g.) 264 locations; much bigger than physical 
memory

● OS and hardware only put "physical" memory panels behind a 
few areas of the wall

– Operations on areas with physical panels work
– Operations outside of those areas fail (page faults!)
– E.g., program reads from 0x100 – that’s a virtual memory 

address
● Doesn’t (can’t!) know what physical "panel" is read

● A physical "panel" is called either a page frame or segment
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Process Virtual Memory
● Each process gets its own (virtual) address space

– 0 to (e.g.) 264 - 1 (or 232 – 1 for a 32-bit architecture)

● Each address in a virtual address space is a virtual address
– (physical address points to a physical memory location)

 

Text
Data 
BSS 

Heap

Kernel

Memory
Mapping

Stack

Process A’s 
address space

Text
Data 
BSS 

Heap

Kernel

Memory
Mapping

Stack

Process B’s 
address space

Text
Data 
BSS 

Heap

Kernel

Memory
Mapping

Stack

Process C’s 
address space

Virtual Address Max
0xFFF..F

Virtual Address  0
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Benefits of Virtual Memory
● A process only sees its own address space

– We get memory isolation between processes implicitly!
● Temporal & spatial locality mean a process likely does not 

need all its data at once
– Don't have 16EB per process of physical memory!
– OS can “oversubscribe” RAM
– Copy RAM areas that have not recently been used out to 

disk (“swap out” or “swap to disk”)
– This file is called swap space
– Can be loaded back into RAM as needed
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Room Analogy
● Out of memory

– We can run out of physical memory panels for our room: go to touch a wall, but 
there are no panels available to put there

– So take a panel we haven’t used in a while, save what’s on it to disk, and then 
reuse it where we are now

● If Needed Again
– When we go to the old panel we saved out we need to restore it: take another 

physical panel and reload the swapped out data from disk
– Map virtual memory to the correct physical memory location
– Program is paused while all this happens – it never knows the difference!

● Works across multiple processes
– OS manages mapping virtual address to physical memory panels
– Panels are shared across all processes
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Address Translation
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Address Translation
● Process knows virtual addresses; hardware needs 

physical address
– Must translate between them!

● Virtual Memory is divided into regions called pages
– Each page is mapped to a physical memory “page 

frame” or just “frame”
– Kernel controls the mapping
– Kernel configures hardware to translate virtual 

addresses into physical addresses
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Address Translation
● Consider a memory operation like:

int *ptr;
*ptr = 10;

● Steps in translation
1)Figure out which virtual memory page *ptr is on
2)Figure out which physical frame it maps to
3)Redirect the access to the correct physical memory 

frame and address within it
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Address Translation
Process A’s

Virtual Address Space
Process B’s

Virtual Address Space
Physical Memory

Frames

● OS maps virtual pages to 
physical frames.
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Address Translation
● Approaches to Mapping “Panels” to Memory

– How do we divide our virtual address space into 
smaller regions (“panels” in our analogy)?
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Paging
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Pages
● Virtual address space is divided into fixed-size pages

– 4 KB is a popular size but modern OSs have bigger pages (e.g., 4 MB) as 
well

● Example
– If we have 16KB virtual address space and page size 4K – how many 

pages?
– We need 4 pages
– Here are 2 process, each with its own virtual address space; page 

numbers are in binary:

page 11

page 10

page 01

page 00

Process A’s
Address Space

page 11

page 10

page 01

page 00

Process B’s
Address Space
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Page Frames
● Physical memory divided into page frames (or frames)

– Page frames and pages are the same size
● Example

– If we have 8KB of memory with 4KB page size = 2 
frames (#'s in binary)

page frame 01

page frame 00

Physical Memory
Frames
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Address Translation
●  A virtual address is divided into two parts

– <page number, offset>

● Example
– 4 pages, each of 16 bytes
– 4 pages need...

● 2 bits to pick between pages
– 16 bytes need...

●  4 bits of offset into the page
– 6-bit virtual address space divided into 2-bit page numbers and 4-bit offsets

● Address 100101 is divided into page number 10 and offset 0101
● Address 000010 is divided into page number 00 and offset 0010
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Audience Participation - Address Translation

● Consider a computer where
– each page is 32 bytes
– have 8 pages
– What does the memory address 10011010b mean?

a) Page 10011b, Offset 010b

b) Page 100b, Offset 11010b

c) Page 010b, Offset 10011b

d) Page 11010b, Offset 100b
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Page Table
● When a process accesses a (virtual) address

– Paging translates the address's page number to a page 
frame number

– The offset is not translated, and does not change
● Kernel maintains a page table per process

– Maps page number (virtual) to a page frame number 
(physical)

page frame 01

page frame 00

Physical Memory
Framespage 11

page 10

page 01

page 00

Process A’s
Address Space

Page 
Number

Page Frame 
Number

00 01

10 00

Page Table
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Address Translation Example
● Example

– Convert virtual address 101011b to physical address:
– Assume 16 byte pages, so offset is 4 bits
– Address is 6 bits, so page is 2 bits (4 pages)
– Page: 10b, maps to page frame 00b
– Offset: 1011b (maps 1:1)
– So physical memory address 001011b

page frame 01

page frame 00

Physical Memory
Framespage 11

page 10

page 01

page 00

Process A’s
Address Space

Page 
Number

Page Frame 
Number

00 01

10 00

Page Table
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Page Table Size
● There are vastly more (virtual) pages than (physical) page frames

– Cannot in general map all pages to frames at once
● This isn’t just about memory used – there may be plenty of 

physical memory to satisfy all memory that’s allocated
● The address space of a process is much larger than what’s 

allocated via sbrk()
– OS only maps a page to a frame when needed (more later)

● Hardware supports converting pointers from virtual to physical 
addresses

– OS configures the page table
– Hardware looks up mappings at runtime



26-02-08  34

Page Table Size
● Page Table Size

– If page numbers use n bits, the maximum possible number of 
pages is 2n

– If offsets use m bits, the maximum possible page size is 2m

– The address bit width is n + m
● Example

– Page size of 4kB on a 32-bit architecture
– m = 12 because 212 = 4096 = 4k
– n = 20 because 32 – 12 = 20
– Therefore we have 220 pages: this is 1,048,576 = 1M pages!
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Audience Participation – Address Translation

● Given the page table below, what is the physical 
address for (virtual) address 0010 1011 1101 1100b?

a) <000001, 1111011100>
b) <001010, 1111011100>
c) <111010, 1111011100>
d) <000101, 1111011100>

Page 
Number

Page Frame 
Number

000001 001010
111010 000011
101001 000111
001010 000101

Page Table
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Segmentation



26-02-08  37

Segmentation
● Segmented memory uses variable-size segments (or sections)

– Pointers are made of two explicit parts, segment and offset
– Instead of taking a uniform virtual address and breaking it 

transparently into page and offset parts, these parts are 
exposed to the programmer

– The segment has a “base” physical address
– Segments are often mapped to a region with some kind of 

meaning, e.g., text segment, data segment, stack segment, 
heap segment

● Fun fact: x86 has supported segmentation since the ‘80s
– ...and x86-64 still does
– ...for some reason
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Segmentation Address translation
● A segmented system can map virtual memory to physical memory

– In a segmented virtual memory system, the segment is a handle
– To access memory, the processor has to look up the associated 

physical base address (like it would with page mapping)
– Hardware usually caches the physical base address when the 

segment is loaded into a special segment register
– Now the software has to optimize segment loads explicitly – a 

headache we didn’t want
● Segmentation is a niche technique and details are beyond course scope

– About as common in the Real World as banked memory
– You don’t actually want me to explain banked memory
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Segmentation and External Fragmentation
● External fragmentation occurs when free space between 

allocations is split up
– Segments use contiguous blocks of non-uniform size
– Free space gets fragmented just as in our heap examples

● Example
– Try allocating 40kB... where does it go?
– A virtual memory system using segments can move segments to 

defrag, but entire segments must move

● Resizing segments is also a challenge
– What happens when we increase the program break?
– Systems designed from the ground up to be segmented usually 

access the OS allocator directly (bad design smell)
– Annoying and inefficient: pointers become 2x size

Used by a segment

Free (32KB)

Used by a segment

Used by a segment

Used by a segment

Free (32KB)

Free (24KB)

Physical Memory
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Paging and External Fragmentation
● Paging does not suffer external fragmentation

– Every page is the same size
– Allocations may be discontiguous
– When you need a page, any page will do

● Internal Fragmentation
– TANSTAAFL: there is very likely to be wasted space at the end of a fixed-size page
– Called internal fragmentation, because the fragment is inside the allocation
– Combat it by keeping page size small
– Small pages mean more page table overhead – there is a tradeoff!

Single 
page

Data inside page

Internal 
Fragmentation: 
Wasted space
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Running out of Memory
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Out of Memory
● Out of memory

– Limited physical memory but virtual memory space is vast!
– Can't bring all virtual pages into physical memory – what do we do?

● Demand paging and swapping
– Demand paging:

a page is brought into memory only when needed (on demand)
– Swapping:

save an in-use page from memory to disk, and load in the required page
– Swap space:

disk space dedicated to store swapped-out pages

● How do we decide which memory page to swap out?
– We need a page replacement algorithm
– Kind of a special case of cache replacement



26-02-08  43

Demand Paging
● Why does demand paging work?

– Insight: a typical program only needs to access a small portion of its memory 
space

– This is about locality of access

● Recall definitions of locality
– Temporal locality: if a program accesses a memory location, it is likely that it's 

going to access it again in the near future
● Recently used pages are already in memory

– Spatial locality: if a program accesses a memory location, it is likely that it's 
going to access other memory locations nearby

● When a memory location is accessed, demand paging brings in the rest of 
the nearby region as well

● Farther areas from the same segment are not brought in!
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Page Replacement Algorithms
● Page fault

– when a memory location is accessed but the 
corresponding page is not found in physical memory

– we need to bring the page into a frame
● The question

– When memory is full* (i.e., all page frames are used) and 
we need to load a new page, which page do we swap out 
to disk to make space?
* On a real modern computer, often lots of memory is 
“free”, but filled with disk cache... we do not consider this 
situation
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Optimal Page Replacement Algorithm
● Optimal page replacement algorithm picks the page 

that will not be used for the longest time
– This assumes that we know the future (which is of 

course impossible)
– It’s useful as a comparison
– Page replacement algorithms try to approximate 

optimal behaviour
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Optimal Page Replacement Example
● Example

– Memory has 4 page frames
– Memory page access order (by page number): 

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

1

Page Access: 1,

1

2

2,

1

2

3

3,

1

2

3

4

4, 1, 2, 

1

2

3

5

5,

4

2

3

5

4,1, 2, 3, 5

Page Faults:

Page 
Replacement:

Page 4 is used last 
in the future, so 

replace it.

1,2,3 are 
all never 

used again
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FIFO (First In, First Out)
● Oldest page gets swapped out first

– Keeps track of when a page was brought in to memory
– 10 page faults!
– Simple, but does not exploit locality well
– ...random selection is often better

Page Access:

5

2

3

4

1 1

2

3

4

1

2

1

2

3

Page Faults:

Page 
Replacement:

1, 2, 3, 4, 1, 2, 5, 4,1, 52, 3,

5

1

3

4

5

1

2

4

5

1

2

3

4

1

2

3

4

5

2

3
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LRU (Least Recently Used)
● Replace page that has gone unused for longest period

– Closer to approximating the optimal algorithm
– Tries to infer the future based on past
– 8 page faults
– Tracking oldest access time across many pages is not simple

Page Access:

1

2

5

4

1 1

2

3

4

1

2

1

2

3

Page Faults:

Page 
Replacement:

1, 2, 3, 4, 1, 2, 5, 4,1, 52, 3,

1

2

5

3

1

2

4

3

5

2

4

3
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Audience Participation - LRU Paging
● Consider the following computer:

– 4 page frames
– Uses LRU page replacement algorithm

● How many page faults are there for the following 
sequence of page accesses?

a) 2 page faults

b) 5 page faults

c) 6 page faults

d) 10 page faults

1, 2, 3, 4, 5, 5,2, 4, 1, 5
* * * * *(1) *(3)
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Second Chance
● Second Change is an approximation of LRU

– Each page has a reference bit (ref_bit), initially = 0
– When a page is accessed, hardware sets ref_bit to 1
– Maintain a moving pointer to the next (candidate) 

“victim”

● When choosing a page to replace, check ref_bit
– If ref_bit == 0, replace it
– Else,

● Clear ref_bit to 0
● Leave page in memory (second chance)
● Move pointer to next page (wrap around)
● Repeat until a victim is found

Ref.
Bit

Pages

0 ...

1 ...

1 ...

0 ...

Next
Victim



26-02-08  51

Second Chance Example
● Example

– Assume we have triggered a page fault
– No empty pages, so must replace
– Let’s find the victim page to replace

Ref.
Bit

Pages

0 ...

1 ...

1 ...

0 ...

Next
Victim

Initial State

Ref.
Bit

Pages

0 ...

0 ...

1 ...

0 ...

Clear flag;
Move on

Ref.
Bit

Pages

0 ...

0 ...

0 ...

0 ...

Clear flag;
Move on

Ref.
Bit

Pages

0 ...

0 ...

0 ...

1 changed
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Audience Participation - Second Chance
● Using second chance page replacement algorithm, 

which page will be the next victim?
Ref.
Bit

Pages

1 Page 110

1 Page 111

0 Page 101

1 Page 001
Next

Victim

a) Page 110b

b) Page 111b

c) Page 101b

d) Page 001b
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Thrashing
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Thrashing
● If a process access a large amount of memory, OS 

could keep needing to bring new pages into memory
● Example

– A process that jumps through a huge amount of 
memory, reading one value every 4K (once per page)

● Thrashing:
– A process is disproportionately spending time 

swapping pages in and out, and not executing 
instructions on the CPU
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Summary
● Virtual Memory

– Process works only in the virtual memory space

– OS can flexibly share memory between processes
– Gives process memory isolation

● Address Translation
– Converting (virtual) addresses to physical addresses

● Paging
– Virtual memory broken up into identical size pages
– Physical memory broken up into page frames (“frames”)

● Segmentation
– Like paging, but different/variable size regions (segments)

● Page replacement algorithms
– Optimal, FIFO, LRU, Second Chance
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