Virtual Memory

Adapted by Joseph Lunderville
from slides by Dr. Brian Fraser
and course material by Dr. Steve Ko
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1)How can each process have its own address space?
2)How can the OS allocate memory to processes?

3)What if we run out of memory?
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Context:
What problem are we solving?
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* Virtual memory is one of the most important OS concepts.
- Itis also a good example that shows the power of abstraction.

* Can find more info in OSTEP book (more depth than we require)
- Chapter 13 The Abstraction: Address Spaces
https://pages.cs.wisc.edu/~remzi/OSTEP/vm-intro.pdf

- Chapter 15 Mechanism: Address Translation
https://pages.cs.wisc.edu/~remzi/OSTEP/vm-mechanism.pdf

- Chapter 18 Paging: Introduction
https://pages.cs.wisc.edu/~remzi/OSTEP/vm-paging.pdf

- Chapter 16 Segmentation
https://pages.cs.wisc.edu/~remzi/OSTEP/vm-segmentation.pdf
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Memory Layout in the Early Days

* One address space Memory
- Could run only a single program
. . 0S
- One user at a time: either run batch
jobs, or get poor utilization
* Memory divided into two parts
- OS and program Program

* Computers are very, very expensive...
can we share interactive access?
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Early Memory Sharing

Memory
* Memory divided into regions 0S
- Could run multiple processes
- Fixed allocations (wasteful!) Process A
* Segments, overlays
- Allow relocation, more efficient sharing
Free
* Problems
- Not granular, regions/segments/overlays are big
- Extra complexity for programmers to manage Process C
overlays manually (overhead if automated)
- No implicit protection, a “bad” pointer in one process
could access another process's memory Process D
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Understanding Memory
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Address-Based Memory Operations

* Variables are a convenience for programmers | defi N
-~ The computer really operates on memory int spir = ai:
. . i — 2 -
~ Instructions are defined by changes to mEy =

memory
* Random Access Memory (RAM) ~  Memory
~ All addresses are equally fast to access inty 2
* Probabilistically true! Used to be int *ptr %’;3572
literal -
* Handwave effects of cache, NUMA It | 0

~ Contrast e.qg. tape, with sequential access
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Locality

Programs tend to access a small portion of their memory much more
frequently

* Code
~ Executes sequentially, but...
Loops jump back and cause a sequence to repeat
Branches skip a portion of the sequence (and often the same one)
Same function may be called many times
Data
~ Small parts of a larger data structure accessed more often, e.qg.
* Index in a database accessed before every data access
* In a game, the part of the map the player is in right now
~ At asmall scale, e.q. in a loop iterating over an array,
* Local variables in the loop are accessed repeatedly
* The array is accessed sequentially
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Locality

* Temporal Locality:
— Recently accessed memory is likely to be accessed again (code
and variables used in a loop)

* Caches directly help
* Spatial Locality:

— Data near to recently accessed memory is likely to be accessed
next

— More sophisticated CPUs with caches usually extend this
concept

* Cache lines often include adjacent data

* Branch prediction, strided prefetch
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Understanding Memory Solutions

* Fundamental properties of memory use
- Programs really work on memory.

- Programs access the same data over and over again
(temporal locality)

- Programs access data near to previously accessed
data (spatial locality)

* Can these properties help us design a memory
sharing abstraction?
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Audience Participation - Locality

* Assume a program has just accessed memory locations 6
and 12
— Spatial locality suggests we might soon access...

a)o, 3,9
b) 6, 12
c)5,7,11,13
d) 4,8, 10, 14

~— Temporal locality suggests we might soon access...

a)o,3,9
b) 6,12
c)5,7,11,13
d) 4,8, 10, 14

OHNOQ-hU‘II\IOOGD
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Solution:
Virtual Memory
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Memory Abstraction

"All problems in computer science can be solved by another level of
indirection, except for the problem of too many levels of indirection."
-- David Wheeler

* Virtual memory is a mechanism to enable
- physical memory sharing for multiple processes

- isolation of each process's memory access
* A process uses virtual memory instead of physical memory

* Virtual memory consists of
- Virtual address space and address translation

- Virtual memory is a good example that demonstrates the power of
abstractions
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Virtual Address Space

Kernel |oxFFF..F
 All memory discussed so far has been virtual memory! >bace
- Virtual address space size is determined by the Stack
pointer size: 0 to (e.g.) 25- 1 o
- Virtual memory is a memory abstraction Memory
(imaginary space) that the program & Mapping
programmer operates in
- The OS and hardware build us this imaginary 7 -
space Heap
* Virtual vs physical BSS
- User-level processes works with virtual addresses Data
- Kernel-level components can deal with both Text
virtual and physical addresses Virtual 0 Physical
Address Memory
Space
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Room Analogy

* Imagine a process as a room
- Its virtual memory space
iIs the surface of the walls

- There are no real walls,
they are an illusion

- Wall panels are moved
into place as needed to
make the room
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Room Analogy (cont'd)

* Imagine a process as a room
~ Virtual memory space is the walls: pointers can point to
the wall, can read/write on wall

~ Walls have (e.g.) 2% locations; much bigger than physical
memory

OS and hardware only put "physical” memory panels behind a
few areas of the wall
~ Operations on areas with physical panels work

~ Operations outside of those areas fail (page faults!)

-~ E.g., program reads from 0x100 - that's a virtual memory
address

* Doesn't (can't!) know what physical "panel" is read

* Aphysical "panel” is called either a page frame or segment
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Process Virtual Memory

* Each process gets its own (virtual) address space
- 0to(e.qg.) 2% -1 (or 232 -1 for a 32-bit architecture)

* Each address in a virtual address space is a virtual address
— (physical address points to a physical memory location)

Process As Process B's Process C's
address space address space address space
Kernel Kernel Kernel | Virtual Address Max
OXFFF..F
Stack Stack Stack
Memory Memory Memory
Mapping Mapping Mapping
S e — —
Heap Heap Heap
BSS BSS BSS
Data Data Data
JoU U U Virtual Address 0
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Benefits of Virtual Memory

* A process only sees its own address space
- We get memory isolation between processes implicitly!

* Temporal & spatial locality mean a process likely does not

need all its data at once
— Don't have 16EB per process of physical memory!

- OS can "oversubscribe” RAM

— Copy RAM areas that have not recently been used out to
disk (“swap out” or “swap to disk”)

- This file is called swap space
— Can be loaded back into RAM as needed
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Room Analogy
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Out of memory

- We can run out of physical memory panels for our room: go to touch a wall, but
there are no panels available to put there

So take a panel we haven't used in a while, save what's on it to disk, and then
reuse it where we are now

If Needed Again

When we go to the old panel we saved out we need to restore it: take another
physical panel and reload the swapped out data from disk

Map virtual memory to the correct physical memory location
Program is paused while all this happens - it never knows the difference!

Works across multiple processes
- 0OS manages mapping virtual address to physical memory panels

Panels are shared across all processes




Address Translation

26-02-08




Address Translation

* Process knows virtual addresses; hardware needs

physical address
- Must translate between them!

* Virtual Memory is divided into regions called pages
- Each page is mapped to a physical memory “page
frame” or just “frame”

- Kernel controls the mapping

- Kernel configures hardware to translate virtual
addresses into physical addresses
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Address Translation

* Consider a memory operation like:
int *ptr;
*ptr = 10;

* Steps in translation
1)Figure out which virtual memory page *ptr is on
2)Figure out which physical frame it maps to

3)Redirect the access to the correct physical memory
frame and address within it
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Address Translation

Process A's Physical Memory Process B's
Virtual Address Space Frames Virtual Address Space
— <
~>
—>

//v T~

* OS maps virtual pages to
physical frames.
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Address Translation

* Approaches to Mapping “Panels” to Memory
- How do we divide our virtual address space into
smaller regions (“panels” in our analogy)?
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Paging
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* Virtual address space is divided into fixed-size pages
~ 4 KB is a popular size but modern OSs have bigger pages (e.g., 4 MB) as
well

* Example

— If we have 16KB virtual address space and page size 4K - how many
pages?

~ We need 4 pages

Here are 2 process, each with its own virtual address space; page
numbers are in binary:

Process A's Process B's
Address Space Address Space
page 11 page 11
page 10 page 10
page 01 page 01
page 00 page 00
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* Physical memory divided into page frames (or frames)
- Page frames and pages are the same size

* Example
- If we have 8KB of memory with 4KB page size = 2
frames (#'s in binary)

Physical Memory
Frames

page frame 01
page frame 00
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Address Translation

* Avirtual address is divided into two parts
- <page number, offset>

* Example
- 4 pages, each of 16 bytes

- 4 pages need...
* 2 bits to pick between pages
- 16 bytes need...
* 4 bits of offset into the page
- 6-bit virtual address space divided into 2-bit page numbers and 4-bit offsets
* Address 100101 is divided into page number 10 and offset 0101
* Address 000010 is divided into page number 00 and offset 0010
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Audience Participation - Address Translation

* Consider a computer where
- each page is 32 bytes

- have 8 pages
- What does the memory address 10011010b mean?

a) Page 10011b, Offset 010b
b) Page 100b, Offset 11010b
c) Page 010b, Offset 10011b
d) Page 11010b, Offset 100b
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Page Table

* When a process accesses a (virtual) address

~— Paging translates the address's page number to a page
frame number

~— The offset is not translated, and does not change

* Kernel maintains a page table per process
~ Maps page number (virtual) to a page frame number

(physical)
Page Table Process A's
Address Space :
Page Page Frame Physical Memory
Number Number page 11 Frames
00 01 page 10 ~ page frame 01
10 00 page 01 >< page frame 00
page 00 7
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Address Translation Example

* Example
— Convertvirtual address 101011b to physical address:

- Assume 16 byte pages, so offset is 4 bits

- Address is 6 bits, so page is 2 bits (4 pages)
- Page: 10b, maps to page frame 00b

- Offset: 1011b (maps 1:1)

— So physical memory address 001011b

Page Table Process A's
Address Space :
Page Page Frame Physical Memory
Number Number page 11 Frames
00 01 page 10~ page frame 01
10 00 page 01 >< page frame 00
page 00 7
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Page Table Size

* There are vastly more (virtual) pages than (physical) page frames
- Cannot in general map all pages to frames at once

* This isn't just about memory used - there may be plenty of
physical memory to satisfy all memory that's allocated

* The address space of a process is much larger than what's
allocated via sbrk()

- OS only maps a page to a frame when needed (more later)

* Hardware supports converting pointers from virtual to physical
addresses
- OS configures the page table

- Hardware looks up mappings at runtime

26-02-08




Page Table Size

* Page Table Size
- If page numbers use n bits, the maximum possible number of

pages is 2"
- If offsets use m bits, the maximum possible page size is 2™

- The address bit width isn + m

* Example
- Page size of 4kB on a 32-bit architecture

- m =12 because 22 = 4096 = 4k
- n=20because 32-12=20
- Therefore we have 22° pages: this is 1,048,576 = 1M pages!
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Audience Participation - Address Translation

* Given the page table below, what is the physical
address for (virtual) address 0010 1011 1101 1100b?

Page Table
a) <000001, 1111011100> Page  Page Frame
Number Number
b) <001010, 1111011100> 000001 001010
c)<111010, 1111011100> 111010 000011

d) <000101, 1111011100> 101001 000111
001010 000101
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Segmentation
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Segmentation

* Segmented memory uses variable-size segments (or sections)
~ Pointers are made of two explicit parts, segment and offset

~ Instead of taking a uniform virtual address and breaking it
transparently into page and offset parts, these parts are
exposed to the programmer

-~ The segment has a “base” physical address

~ Segments are often mapped to a region with some kind of
meaning, e.g., text segment, data segment, stack segment,
heap segment

* Fun fact: x86 has supported segmentation since the ‘80s
~ ...and x86-64 still does

~ ...for some reason
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Segmentation Address translation

* A segmented system can map virtual memory to physical memory
- In a segmented virtual memory system, the segment is a handle

- To access memory, the processor has to look up the associated
physical base address (like it would with page mapping)

- Hardware usually caches the physical base address when the
segment is loaded into a special segment register

- Now the software has to optimize segment loads explicitly - a
headache we didn’t want

* Segmentation is a niche technique and details are beyond course scope
- About as common in the Real World as banked memory

- You don't actually want me to explain banked memory
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Segmentation and External Fragmentation
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External fragmentation occurs when free space between
allocations is split up
- Segments use contiguous blocks of non-uniform size

- Free space gets fragmented just as in our heap examples

Example
— Try allocating 40kB... where does it go?

- Avirtual memory system using segments can move segments to
defrag, but entire segments must move

Resizing segments is also a challenge
- What happens when we increase the program break?

- Systems designed from the ground up to be segmented usually
access the OS allocator directly (bad design smell)

- Annoying and inefficient: pointers become 2x size

Physical Memory

Used by a segment

Free (24KB)

Used by a segment

Used by a segment

Free (32KB)

Used by a segment

Free (32KB)




Paging and External Fragmentation

* Paging does not suffer external fragmentation
- Every page is the same size

- Allocations may be discontiguous

- When you need a page, any page will do

* Internal Fragmentation
- TANSTAAFL: there is very likely to be wasted space at the end of a fixed-size page

Called internal fragmentation, because the fragment is inside the allocation

- Combat it by keeping page size small

Small pages mean more page table overhead - there is a tradeoff!

j Internal
Single - Fragmentation:
D

page ata Inside page .\Wasted space
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Running out of Memory
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Out of Memory

* Out of memory
— Limited physical memory but virtual memory space is vast!

— (Can't bring all virtual pages into physical memory - what do we do?

* Demand paging and swapping

Demand paging:
a page is brought into memory only when needed (on demand)

- Swapping:
save an in-use page from memory to disk, and load in the required page

— Swap space:
disk space dedicated to store swapped-out pages

* How do we decide which memory page to swap out?
- We need a page replacement algorithm

- Kind of a special case of cache replacement
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Demand Paging

* Why does demand paging work?
- Insight: a typical program only needs to access a small portion of its memory
space

- This is about locality of access

* Recall definitions of locality
- Temporal locality: if a program accesses a memory location, it is likely that it's
going to access it again in the near future

* Recently used pages are already in memory

- Spatial locality: if a program accesses a memory location, it is likely that it's
going to access other memory locations nearby

* When a memory location is accessed, demand paging brings in the rest of
the nearby region as well

* Farther areas from the same segment are not brought in!
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Page Replacement Algorithms

* Page fault
~ when a memory location is accessed but the
corresponding page is not found in physical memory

~ we need to bring the page into a frame

* The question
~ When memory is full* (i.e., all page frames are used) and

we need to load a new page, which page do we swap out
to disk to make space?

* On a real modern computer, often lots of memory is
“free”, but filled with disk cache... we do not consider this
situation

26-02-08




Optimal Page Replacement Algorithm

* Optimal page replacement algorithm picks the page
that will not be used for the longest time

- This assumes that we know the future (which is of
course impossible)

- It's useful as a comparison

- Page replacement algorithms try to approximate
optimal behaviour
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Optimal Page Replacement Example

* Example
- Memory has 4 page frames

- Memory page access order (by page number):
1,2,3,41,2,51,2,3,4,5

erats e e P e
1 ’ 2! 3! 4: 1 ’ 21 5, 1

Page Access: , 2, 3, 4, 5
1| 1]1]|]1 1l 123are || 4
2 2 2 2 all never 2
3 3 3 \_used again 3
4 5 )
P Page 4 is used last % %
age .
| . in the future, so
Replacement: replace it.
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FIFO (First In, First Out)

* Oldest page gets swapped out first
~ Keeps track of when a page was brought in to memory
~ 10 page faults!
— Simple, but does not exploit locality well
~ ..random selection is often better

Page Faults: * * * * * *** * *
1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

Page Access:

1 1 1 1 5 || 5|| 5|5/ 4 4
2 2 2 2 1 |1 |1 1 5

3 3 3 (3|2 2|2 2

4 4 || 4 3

e T 0 3 1% 3%
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LRU (Least Recently Used)

* Replace page that has gone unused for longest period
— Closer to approximating the optimal algorithm

- Tries to infer the future based on past
- 8 page faults
- Tracking oldest access time across many pages is not simple

oo i gl g e e gk gk gk
1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

Page Access:

1 1 1 1 1 1 1 5
2 2 2 2 2 2 2
3 3 5 S 4 4
4 4 3 3 3
Page
Replacement: % % % %
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Audience Participation - LRU Paging

* Consider the following computer:
- 4 page frames

- Uses LRU page replacement algorithm

* How many page faults are there for the following
sequence of page accesses?

a) 2 page faults
b) 5 page faults
c) 6 page faults
d) 10 page faults

1, 2, 3, 4, 5, 2, 4 5 1, 5
* * * * *(1) *(3)
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Second Chance

* Second Change is an approximation of LRU
- Each page has a reference bit (ref_bit), initially =0

- When a page is accessed, hardware sets ref_bit to 1

- Maintain a moving pointer to the next (candidate)

“victim”
* When choosing a page to replace, check ref_bit Ref. | Pages
- Ifref_bit == 0, replaceit Bit
— Else, 0
) Next
* Clearref_bitto0 he

* Leave page in memory (second chance)

Ok |k

* Move pointer to next page (wrap around)

* Repeat until a victim is found
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Second Chance Example

* Example
- Assume we have triggered a page fault

- No empty pages, so must replace

- Let's find the victim page to replace

Initial State Clear flag; Clear flag;
Move on Move on
Ref. | Pages Ref.| Pages Ref.| Pages Ref.| Pages
Bit Bit Bit Bit
0 0 0 0
Next
Victim 1 ] 0 0 0
1 41 0 0
0 0 -, 0 1 1 |changed
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Audience Participation - Second Chance

* Using second chance page replacement algorithm,
which page will be the next victim?

Ref. Pages
Bit a) Page 110b
1 Page 110 b) Page 111b

Page 111 c) Page 101b

1
s 0 Page 101 d) Page 001b
Victim 1 Page 001
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Thrashing
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Thrashing

 If a process access a large amount of memory, OS
could keep needing to bring new pages into memory

* Example
- A process that jumps through a huge amount of
memory, reading one value every 4K (once per page)

* Thrashing:
— A process is disproportionately spending time
swapping pages in and out, and not executing
instructions on the CPU
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Summary

* Virtual Memory
— Process works only in the virtual memory space

- OS can flexibly share memory between processes

- Gives process memory isolation

* Address Translation
- Converting (virtual) addresses to physical addresses

* Paging
- Virtual memory broken up into identical size pages

- Physical memory broken up into page frames (“frames”)

* Segmentation
- Like paging, but different/variable size regions (segments)

* Page replacement algorithms
- Optimal, FIFO, LRU, Second Chance
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